
CS151 Intro to Data Structures
Final Exam Review

1CS151 - Lecture 27 - Spring '24 05/1/24

Announcements

HW7 Due May 9th

Friday OH: 11-2pm Park 205

2CS151 - Lecture 27 - Spring '24 05/1/24

Exam Format

• Cumulative but heavily focused on second half of content

• Tested on knowledge of DS (how they work and their pros and
cons), programming skills, and problem solving

• 180min

• 2 8.5/11in cheat sheets allowed (front and back)
• Format: 125 total points

• 5 points T/F questions
• 10 points reading and understanding code
• 33 points programming
• 77 points short answer

3

Topics

Data Structures

• Arrays

• Expandable Arrays

• Stacks

• Queues

• Linked Lists

• Binary Trees

• Binary Search Trees

• Heaps

• Hash Tables

• AVL Trees

• Splay Trees

• Graphs

Other concepts:

• Generics

• Iterators

• Big-O analysis
• OOP & Inheritance

• Interfaces

• Sorting
• Selection Sort

• Heap Sort

• Merge Sort

• Quick Sort

4CS151 - Lecture 27 - Spring '24 05/1/24

Perform the following operations

For the following data structures:

1. bst
2. avl tree
3. splay tree
4. min heap

insert: 42, 17, 89, 5, 63, 28, 10, 15, 77, 33, 50

remove: 10, 17

what was the runtime complexity?

5

Perform the following operations

For the following hash tables of size 7 with h(x) = x % 7

1. Linear probing
2. Quadratic probing
3. Double probing (h(x) + f(i * h2(x))

a. with h2(x) = 11 - (x % 11)

insert: 42, 17, 89, 5, 63, 28, 77

remove: 5, 17

what was the runtime complexity?

6

Breadth-First Traversal

what is the breadth first traversal output of this
tree?

1 7 9 2 6 9 5 11 5

7

Breadth First Search (BFS)

03/20/24CS151 - Lecture 17 - Spring '24 8

https://www.codecademy.com/article/tree-traversal

Breadth-First Traversal

9

Let’s code it

Other Concepts

10

Runtime Complexity

Sort these from fastest to slowest:

• O(n)
• O(n^2)
• O(logn)
• O(1)
• O(2^n)

11

Sorting

Sort [5, 18, 42, 67, 29, 10, 56, 83] using the following algorithms. Show
your work at each step

1. Selection Sort
2. Heap Sort
3. Merge Sort
4. Quick Sort - use the following pivots: 29,10,56

12

Sorting

Discuss runtime and space complexity of each algorithm

1. Selection Sort
a. space complexity?

i. O(1) it is in place
ii. O(n) also accepted if you explain that you are counting the original array

b. runtime complexity?
i. O(n^2)

2. Heap Sort
a. space complexity?

i. O(n) because we make a heap
b. runtime complexity?

i. O(nlogn) ... each insert is O(logn) and we do n inserts. Each poll is O(logn) and we do n polls = O(nlogn + nlogn) = O(nlogn)
3. Merge Sort

a. space complexity?
i. O(n) because create smaller arrays which are then merged

b. runtime complexity?
i. O(nlogn) ... runtime of merge is O(n) and we do log n merges

4. Quick Sort
a. space complexity?

i. O(1) in place
b. runtime complexity?

i. O(nlogn) with a good pivot
ii. O(n^2) with a bad pivot

13

Data Structure Design Selection

You are designing a database system for a large e-commerce platform. The
system needs to efficiently manage customer orders, allowing for quick
retrieval and modification of orders. The main operations required are:

1. Rapid insertion of new orders into the system.
2. Efficient removal of orders based on time they were ordered.
3. Supporting fast updates or cancellations of orders.
4. Fast expansion to support a rapid increase in orders

Which data structure would you choose to implement the order
management system, and why? Provide an explanation of your choice,
considering factors such as time and space complexity

14

Data Structure Design Selection
1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

15

ExpandableArray?

1. Insertion: O(n)

2. Removal: O(n)

3. Updates: O(n) ... we need to find the order

4. Expansion: O(n)

Data Structure Design Selection
1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

16

Doubly LinkedList?

1. Insertion: O(1)

2. Removal: O(1) since we’re removing the first order that was put in (head)

3. Updates: O(n) since we need to search

4. Expansion: O(1) we can keep adding things to tail as they come in

Data Structure Design Selection
1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

17

Stack (FILO)?

1. Insertion: O(1)

2. Removal: O(n) a stack is FILO but we want to remove from the first ordered...

a. we’ll need to copy over to another stack! Extra memory!

3. Updates: O(n) we’ll need to copy over to another stack! Extra memory!

4. Expansion: O(1)

Data Structure Design Selection
1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

18

Queue (FIFO)?

1. Insertion: O(1)

2. Removal: O(1)

3. Updates: O(n) we’ll need to copy over to another stack! Extra memory!

4. Expansion: O(1)

Data Structure Design Selection
1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

19

Balanced BST / AVL / Splay ?

1. Insertion: O(logn)

2. Removal: O(logn)

3. Updates: O(logn)

4. Expansion: O(1)

Data Structure Design Selection

1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

20

Heap?

1. Insertion: O(logn)

2. Removal: O(logn) poll

3. Updates: O(logn)

4. Expansion: O(1)

Data Structure Design Selection

1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

21

Hash Table?

1. Insertion: O(1)

2. Removal: O(1)

3. Updates: O(1)

4. Expansion: O(n)

Data Structure Design Selection
1. Rapid insertion of new orders into the system.

2. Efficient removal of orders based on time they were ordered.

3. Supporting fast updates or cancellations of orders.

4. Fast expansion to support a rapid increase in orders

22

Which data structure would you select?

DLL - only drawback is updates since we have to search

Hash Table - only drawback is expansion since its array based

Heap / Tree - logn for insert, remove, and update, but expansion

is constant time.

Programming Questions

23

ChainHashMap - numElements

Add a method int numElements() to count the number of elements in the hash
table. It should be a method within the ChainHashMap class. If needed, you may
add additional methods to that class as well.

ChainHashMap.java

24

First Unique Character
Given a string s, find the first non-repeating character in it and return its index. If it does
not exist, return -1. You may use an additional data structure. Discuss the runtime
and space complexity. Your solution should have a complexity of O(n) for full credit.

25

Example 1:

Input: s = "leetcode"

Output: 0

Example 2:

Input: s = "loveleetcode"

Output: 2

Example 3:

Input: s = "aabb"

Output: -1

Ideas?
- for each char.. loop over the rest of

the string to see if it exists again.
O(n^2)

- What data structure has fast
insertion and lookups?

