
CS151 Intro to Data Structures

Graphs

1CS151 - Lecture 24 - Spring '24 - 4/22/24

Announcements

HW8 Due May 9th

Extra Office Hours next week

No Office hours friday

No Lab on Monday - Extra Credit opportunity instead

2CS151 - Lecture 24 - Spring '24 - 4/22/24

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 3

Graphs

• A way of representing relationships between pairs of objects
• Consist of Vertices (V) with pairwise connections between them

Edges (E)
• A Graph G is a set of vertices and edges (V, E)

4

Edges

• An edge (u, v) connects vertices u and v
• Edges can be directed or undirected
• An edge is said to be incident to a vertex if the vertex is one of the

endpoints

5

Directed vs Undirected Graphs

6

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 7

Representing a graph

Adjacency List -

For each vertex v, we maintain a separate list containing the edges that
are outgoing from v

8

0 1

2

3

4

5

- Each index in the array
represents a vertex

Graph ADT

CS151 - Lecture 24 - Spring '24 - 4/22/24 9

Graph ADT

CS151 - Lecture 24 - Spring '24 - 4/22/24 10

Representing a graph

Let’s implement a graph as an Adjacency List

11

Representing a graph - Adjacency List

Runtime Complexity: (In terms of V and E rather than n)
- addVertex:

- O(V*E)

- addEdge:
- O(E) if we check for duplicates and add to tail
- O(1) if we add to head

- removeVertex:
- O(V*E)

- removeEdge:
- O(E)

12

Representing a graph

Adjacency Matrix -

each index in the array is another array

Maintains an VxV matrix

where each slot (i,j) represents an outgoing edge from i to j

13

0 1

2

3

4

5

1

1

1

1

1 1

Representing a graph

Let’s implement a graph as an Adjacency Matrix

14

Representing a graph - Adjacency Matrix

Runtime Complexity: (In terms of V and E rather than n)
- addVertex:

- O(V^2)

- addEdge:
- O(1)

- removeVertex:
- O(V)

- removeEdge:
- O(1)

15

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 16

Reachability

Reachability is determining if there exists a path between two vertices
in a graph

Common questions about graphs involve Reachability

• Does a path exist from vertex u to vertex v?
• Find all vertices that are reachable from v

17

Depth First Traversal

18

void DFS(root) {
for each child of root:

DFS(child)
}

Does this work for graphs?

Depth First Traversal

19

void DFS(root) {
for each child of root:

DFS(child)
}

How can we modify the code to deal
with cycles?

Keep track of what we’ve already visited!

Let’s code this for a Matrix Graph

0 1

2

3

4

5

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 20

Weighted Graphs

Edges have weights/costs

CS151 - Lecture 24 - Spring '24 - 4/22/24 21

A B
10

Shortest Paths

A path is defined as a set of edges

The length of a path is the sum of the weights of the edges

22

Shortest Paths

What is the length of the path P = ((SFO, DFW), (DFW, MIA), (MIA, JFK))

23

Shortest Paths

What is the shortest path from SFO to JFK?

There are many possible paths...

((SFO, ORD), (ORD, JFK))

((SFO, LAX), (LAX, MIA), (MIA, JFK))

((SFO, BOS), (BOS, JFK))

....

((SFO, DFW), (DFW, ORD), (ORD, JFK))

24

Dijkstra's algorithm

• graph search algorithm that finds the shortest path between nodes
in a weighted graph

• maintains a set of vertices whose shortest distance from the source
has already been determined
• uses a min heap to select the vertex with the smallest distance

25

Dijkstra's algorithm

1. init:
a. assign a init distance for each node
b. create a min-heap with source

2. while heap is non-empty:
a. poll node p
b. For each neighboring node not yet visited:

i. distance of neighbor = dist(p) + weight of edge (p, neighbor)
ii. if neighbor == dst: return dist
iii. If this distance is less than the current dist, update it.

c. update the heap if distances changed

26

