# CS151 Intro to Data Structures 

Graphs

## Announcements

HW8 Due May 9th
Extra Office Hours next week

No Office hours friday
No Lab on Monday - Extra Credit opportunity instead

## Graphs

- Terminology
- Data Structures for Graphs
- Adjacency Lists
- Adjacency Matrix
- Traversals
- Shortest Paths
- Djikstra's Algorithm


## Graphs

- A way of representing relationships between pairs of objects
- Consist of Vertices (V) with pairwise connections between them Edges (E)
- A Graph $\boldsymbol{G}$ is a set of vertices and edges (V, E)



## Edges

- An edge ( $u, v$ ) connects vertices $u$ and $v$
- Edges can be directed or undirected
- An edge is said to be incident to a vertex if the vertex is one of the endpoints


Directed Edge


Undirected Edge


Self Edge
(Unusual but usually allowed)

## Directed vs Undirected Graphs



Example of a directed graph representing a flight network.


Figure 14.1: Graph of coauthorship among some authors.

## Graphs

- Terminology
- Data Structures for Graphs
- Adjacency Lists
- Adjacency Matrix
- Traversals
- Shortest Paths
- Djikstra's Algorithm


## Representing a graph

## Adjacency List -

For each vertex v , we maintain a separate list containing the edges that are outgoing from $v$


- Each index in the array represents a vertex


## Graph ADT

numVertices( ): Returns the number of vertices of the graph.
vertices(): Returns an iteration of all the vertices of the graph.
numEdges(): Returns the number of edges of the graph.
edges(): Returns an iteration of all the edges of the graph.
getEdge $(u, v)$ : Returns the edge from vertex $u$ to vertex $v$, if one exists; otherwise return null. For an undirected graph, there is no difference between getEdge $(u, v)$ and getEdge $(v, u)$.
endVertices $(e)$ : Returns an array containing the two endpoint vertices of edge $e$. If the graph is directed, the first vertex is the origin and the second is the destination.
opposite $(v, e)$ : For edge $e$ incident to vertex $v$, returns the other vertex of the edge; an error occurs if $e$ is not incident to $v$.
outDegree $(v)$ : Returns the number of outgoing edges from vertex $v$.
inDegree $(v)$ : Returns the number of incoming edges to vertex $v$. For an undirected graph, this returns the same value as does outDegree( $v$ ).

## Graph ADT

outgoingEdges $(v)$ : Returns an iteration of all outgoing edges from vertex $v$.
incomingEdges(v): Returns an iteration of all incoming edges to vertex $v$. For an undirected graph, this returns the same collection as does outgoingEdges $(v)$.
insertVertex $(x)$ : Creates and returns a new Vertex storing element $x$.
insertEdge $(u, v, x)$ : Creates and returns a new Edge from vertex $u$ to vertex $v$, storing element $x$; an error occurs if there already exists an edge from $u$ to $v$.
removeVertex(v): Removes vertex $v$ and all its incident edges from the graph. removeEdge(e): Removes edge $e$ from the graph.

## Representing a graph

Let's implement a graph as an Adjacency List

## Representing a graph - Adjacency List

Runtime Complexity: (In terms of V and E rather than n)

- addVertex:
- O(V*E)
- addEdge:
- O(E) if we check for duplicates and add to tail
- O(1) if we add to head
- removeVertex:
- O(V*E)
- removeEdge:
- O(E)


## Representing a graph

## Adjacency Matrix -

each index in the array is another array
Maintains an VxV matrix
where each slot ( $\mathrm{i}, \mathrm{j}$ ) represents an outgoing edge from i to j


|  | 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |
|  |  |  |  | 1 |  |
|  | 1 |  |  |  |  |
|  |  |  | 1 |  | 1 |
|  |  |  |  |  |  |

## Representing a graph

Let's implement a graph as an Adjacency Matrix

## Representing a graph - Adjacency Matrix

Runtime Complexity: (In terms of V and E rather than n )

- addVertex:
- $O\left(V^{\wedge} 2\right)$
- addEdge:
- O(1)
- removeVertex:
- O(V)
- removeEdge:
- O(1)


## Graphs

- Terminology
- Data Structures for Graphs
- Adjacency Lists
- Adjacency Matrix
- Traversals
- Shortest Paths
- Djikstra's Algorithm


## Reachability

Reachability is determining if there exists a path between two vertices in a graph

Common questions about graphs involve Reachability

- Does a path exist from vertex $u$ to vertex $v$ ?
- Find all vertices that are reachable from $v$


## Depth First Traversal

```
void DFS(root) {
    for each child of root:
        DFS (child)
}
```

Does this work for graphs?


Atree


## Depth First Traversal

How can we modify the code to deal with cycles?

```
void DFS(root)
    for each child of root:
        DFS (child)
}
```



Keep track of what we've already visited!

Let's code this for a Matrix Graph

## Graphs

- Terminology
- Data Structures for Graphs
- Adjacency Lists
- Adjacency Matrix
- Traversals
- Shortest Paths
- Djikstra’s Algorithm


## Weighted Graphs

## Edges have weights/costs




Figure 14.14: A weighted graph whose vertices represent major U.S. airports and whose edge weights represent distances in miles. This graph has a path from JFK to LAX of total weight 2,777 (going through ORD and DFW). This is the minimumweight path in the graph from JFK to LAX.

## Shortest Paths

A path is defined as a set of edges

$$
P=\left(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\right)
$$

The length of a path is the sum of the weights of the edges

$$
w(P)=\sum_{i=0}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

## Shortest Paths

What is the length of the path $\mathrm{P}=((\mathrm{SFO}, \mathrm{DFW}),(\mathrm{DFW}, \mathrm{MIA}),(\mathrm{MIA}, \mathrm{JFK}))$


## Shortest Paths

What is the shortest path from SFO to JFK?

There are many possible paths...
((SFO, ORD), (ORD, JFK))
((SFO, LAX), (LAX, MIA), (MIA, JFK)) ((SFO, BOS), (BOS, JFK))

((SFO, DFW), (DFW, ORD), (ORD, JFK))

## Dijkstra's algorithm

- graph search algorithm that finds the shortest path between nodes in a weighted graph
- maintains a set of vertices whose shortest distance from the source has already been determined
- uses a min heap to select the vertex with the smallest distance


## Dijkstra's algorithm

1. init:
a. assign a init distance for each node
b. create a min-heap with source
2. while heap is non-empty:

a. poll node $p$
b. For each neighboring node not yet visited:
i. distance of neighbor $=\operatorname{dist}(p)+$ weight of edge ( $p$, neighbor)
ii. if neighbor $==$ dst: return dist
iii. If this distance is less than the current dist, update it.
c. update the heap if distances changed
