
CS151 Intro to Data Structures
  AVL

  Splay Trees
Graphs
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Announcements

HW7 Due last night
Two late days remaining 

HW8 Due May 9th 

No office hours this Friday 
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Examples - which way should I rotate?
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rotateLeft rotateRightLeft rotateRight rotateLeftRight



Deletion
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Delete Example 1: 32
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Delete Example 1: 32
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rotateLeft



Delete Example 2: 88
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Delete Example 2: 88
rotateLeftRight
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rotateLeft rotateRight



Delete Example 3: 20
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rotateRight
rotateRight



Delete Example 3: 20

• Deletion can cause more than one rotation 

• Worst case requires O(logn) rotations 
• deleting from a deepest leaf node and rotating each subtree up to the root
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Removal

Runtime Complexity? 
a. search   + find node to rebalance +  rotate
b. O(logn) +           O(logn)        +  O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we 
only traverse the height of the  tree once 
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Performance of BSTs
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Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)



Splay Trees
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Splay Trees

• No enforcement on height

• Instead, exploits principle of locality
• items that have been recently accessed are more likely to be accessed again 

in the near future

• “Move to root” operation 
• When a node is accessed (searched, inserted, or deleted), it becomes the 

root of the tree by performing a series of rotations called "splays"
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Splaying

• Move to root operation requires a zig / zag restructuring

• zig
a. accessed node becomes root of subtree
b. parent becomes child 
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Splaying - Zig 
• zig

a. accessed node becomes root of subtree
b. parent becomes child 
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Splaying: Zig-Zig
zig-zig:

• step 1: zig
a. accessed node’s parent (y) becomes root
b. parent (of y) becomes child (of y) 

• step 2: zig
a. accessed node (x) becomes root
b. parent (of x) becomes child (of x) 
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before after



zig-zig:

• step 1: zig
a. accessed node’s parent (4) becomes root
b. parent becomes child 

• step 2: zig
a. accessed node (3) becomes root
b. parent becomes child 
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Splaying: Zig-Zag

zig-zag:

• step 1: zig
a. accessed node (x) becomes root of subtree
b. parent (of x) becomes child (of x)

• step 2: zag
a. accessed node (x) becomes root of tree
b. parent (of x) becomes child (of x)

Called zig-zag because the second step is a rotation

in the opposite direction
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before

after



Splaying: Zig-Zag
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Splaying: Zig-Zag and Zig-Zig

- Analogous to a double rotation in AVLs

- Zig-Zag
- Two rotations in opposite directions

- Zig-Zig
- Two rotations in the same direction
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Which Transformation to Perform

1. Zig: accessed node does not have a grandparent. Only one rotation 
required

2. Zig-Zig: accessed node and its parent are both children on the same 
side
a. x is the left child of y and y is the left child of z OR
b. x is the right child of y and y is the right child of z 

3. Zig-Zag: one of x and y is a right child and the other is a left child 
a. Analogous to double rotations in AVLs
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Splaying

Repeating restructurings until the accessed node x is at the root of the 
tree. 

Series of zig, zig-zig, and zig-zag rotations 
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Example - insert(14)
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When/what to Splay
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on search for x:  if x is found, splay x. else splay x’s parent
 
on insert x: splay x after insertion 

on remove x:  splay parent of removed leaf node 



Deletion: remove(8)
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remove 8 and replace it with 7 
(largest node on left) 

splay 6 (parent of 
removed node)



Analysis of Splaying 

Runtime of restructuring operations:

1. zig
a. O(1)

2. zig-zig
a. O(1)

3. zig-zag
a. O(1)
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Analysis of Splaying

Splay trees do rotations after every operation (including search)

Each rotation is constant time.. 

What is the max number of rotations we may need to perform?
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insert(0)



Analysis of Splaying

Each rotation is constant time.. 

What is the max number of rotations we may need to perform? 

O(n)
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Analysis of Splaying 

Worst case:

- Search: 
- O(n)

- Remove:
- O(n)

- Insert:
- O(n)
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Analysis of Splaying

High cost operations often balance the tree
Amortized: O(logn)
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Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths 

• Djikstra’s Algorithm
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Graphs

• A way of representing relationships between pairs of objects
• Consist of Vertices (V) with pairwise connections between them 

Edges (E)
• A Graph G is a set of vertices and edges (V, E) 
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Edges

• An edge (u, v) connects vertices u and v  
• Edges can be directed or undirected
• An edge is said to be incident to a vertex if the vertex is one of the 

endpoints

37



Directed vs Undirected Graphs
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Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths 

• Djikstra’s Algorithm
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Representing a graph  

Adjacency List - 

For each vertex v, we maintain a separate list containing the edges that 
are outgoing from v
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0 1

2

3

4

5

- Each index in the array 
represents a vertex



Graph ADT
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Graph ADT
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Representing a graph  

Let’s implement a graph as an Adjacency List 
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Representing a graph - Adjacency List 

Runtime Complexity: (In terms of V and E rather than n)
- addVertex: 

- O(V) 

- addEdge:
- O(E)

- removeVertex:
- O(V*E)

- removeEdge:
- O(E) 
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Representing a graph  

Adjacency Matrix - 

each index in the array is another array

Maintains an VxV matrix 

where each slot (i,j) represents an outgoing edge from i to j 
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0 1

2
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1

1

1

1

1 1



Representing a graph  

Let’s implement a graph as an Adjacency Matrix 
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Representing a graph - Adjacency Matrix 

Runtime Complexity: (In terms of V and E rather than n)
- addVertex: 

- O(V)

- addEdge:
- O(1)

- removeVertex:
- O(V)

- removeEdge:
- O(1)
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Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths 

• Djikstra’s Algorithm
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Reachability 

Reachability is determining if there exists a path between two vertices 
in a graph

Common questions about graphs involve Reachability

• Does a path exist from vertex u to vertex v? 
• Find all vertices that are reachable from v
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Depth First Traversal 
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void DFS(root) {
for each child of root:

DFS(child) 
}

Does this work for graphs?



Depth First Traversal  
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void DFS(root) {
for each child of root:

DFS(child) 
}

How can we modify the code to deal 
with cycles?

Keep track of what we’ve already visited!

Let’s code this for a Matrix Graph

0 1

2

3

4

5



Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths 

• Djikstra’s Algorithm
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Weighted Graphs

Edges have weights/costs
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Shortest Paths

A path is defined as a set of edges

The length of a path is the sum of the weights of the edges 
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Shortest Paths

What is the length of the path P = ((SFO, DFW), (DFW, MIA), (MIA, JFK))

 

55



Shortest Paths

What is the shortest path from SFO to JFK? 

There are many possible paths... 

((SFO, ORD), (ORD, JFK)) 

((SFO, LAX),  (LAX, MIA), (MIA, JFK))

((SFO, BOS), (BOS, JFK)) 

....

((SFO, DFW), (DFW, ORD), (ORD, JFK))
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Dijkstra's algorithm

• graph search algorithm that finds the shortest path between nodes 
in a weighted graph

• maintains a set of vertices whose shortest distance from the source 
has already been determined 
• uses a min heap to select the vertex with the smallest distance
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Dijkstra's algorithm

1. init: 
a. assign a init distance for each node 
b. create a min-heap with source

2. while heap is non-empty:
a. poll node p
b. For each neighboring node not yet visited:

i. distance of neighbor = dist(p) + weight of edge (p, neighbor) 
ii. if neighbor == dst: return dist
iii. If this distance is less than the current dist, update it. 

c. update the heap if distances changed 
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