
CS151 Intro to Data Structures
 AVL

 Splay Trees
Graphs

1CS151 - Lecture 24 - Spring '24 - 4/22/24

Announcements

HW7 Due last night
Two late days remaining

HW8 Due May 9th

No office hours this Friday

2CS151 - Lecture 24 - Spring '24 - 4/22/24

Examples - which way should I rotate?

3

rotateLeft rotateRightLeft rotateRight rotateLeftRight

Deletion

4

Delete Example 1: 32

5CS151 - Lecture 22 - Spring '24 - 4/15/24

Delete Example 1: 32

6CS151 - Lecture 22 - Spring '24 - 4/15/24

rotateLeft

Delete Example 2: 88

7

Delete Example 2: 88
rotateLeftRight

8

rotateLeft rotateRight

Delete Example 3: 20

9

rotateRight
rotateRight

Delete Example 3: 20

• Deletion can cause more than one rotation

• Worst case requires O(logn) rotations
• deleting from a deepest leaf node and rotating each subtree up to the root

10

Removal

Runtime Complexity?
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we
only traverse the height of the tree once

11

Performance of BSTs

12CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

13CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

14CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)

Splay Trees

15

Splay Trees

• No enforcement on height

• Instead, exploits principle of locality
• items that have been recently accessed are more likely to be accessed again

in the near future

• “Move to root” operation
• When a node is accessed (searched, inserted, or deleted), it becomes the

root of the tree by performing a series of rotations called "splays"

16

17

Splaying

• Move to root operation requires a zig / zag restructuring

• zig
a. accessed node becomes root of subtree
b. parent becomes child

18before after

Splaying - Zig
• zig

a. accessed node becomes root of subtree
b. parent becomes child

19

Splaying: Zig-Zig
zig-zig:

• step 1: zig
a. accessed node’s parent (y) becomes root
b. parent (of y) becomes child (of y)

• step 2: zig
a. accessed node (x) becomes root
b. parent (of x) becomes child (of x)

20

before after

zig-zig:

• step 1: zig
a. accessed node’s parent (4) becomes root
b. parent becomes child

• step 2: zig
a. accessed node (3) becomes root
b. parent becomes child

21

Splaying: Zig-Zag

zig-zag:

• step 1: zig
a. accessed node (x) becomes root of subtree
b. parent (of x) becomes child (of x)

• step 2: zag
a. accessed node (x) becomes root of tree
b. parent (of x) becomes child (of x)

Called zig-zag because the second step is a rotation

in the opposite direction

22

before

after

Splaying: Zig-Zag

23

Splaying: Zig-Zag and Zig-Zig

- Analogous to a double rotation in AVLs

- Zig-Zag
- Two rotations in opposite directions

- Zig-Zig
- Two rotations in the same direction

24

Which Transformation to Perform

1. Zig: accessed node does not have a grandparent. Only one rotation
required

2. Zig-Zig: accessed node and its parent are both children on the same
side
a. x is the left child of y and y is the left child of z OR
b. x is the right child of y and y is the right child of z

3. Zig-Zag: one of x and y is a right child and the other is a left child
a. Analogous to double rotations in AVLs

25

Splaying

Repeating restructurings until the accessed node x is at the root of the
tree.

Series of zig, zig-zig, and zig-zag rotations

26

Example - insert(14)

27CS151 - Lecture 23 - Spring '24 - 4/17/24

When/what to Splay

28CS151 - Lecture 23 - Spring '24 - 4/17/24

on search for x: if x is found, splay x. else splay x’s parent

on insert x: splay x after insertion

on remove x: splay parent of removed leaf node

Deletion: remove(8)

29CS151 - Lecture 23 - Spring '24 - 4/17/24

remove 8 and replace it with 7
(largest node on left)

splay 6 (parent of
removed node)

Analysis of Splaying

Runtime of restructuring operations:

1. zig
a. O(1)

2. zig-zig
a. O(1)

3. zig-zag
a. O(1)

30

Analysis of Splaying

Splay trees do rotations after every operation (including search)

Each rotation is constant time..

What is the max number of rotations we may need to perform?

31

insert(0)

Analysis of Splaying

Each rotation is constant time..

What is the max number of rotations we may need to perform?

O(n)

32

Analysis of Splaying

Worst case:

- Search:
- O(n)

- Remove:
- O(n)

- Insert:
- O(n)

33

Analysis of Splaying

High cost operations often balance the tree
Amortized: O(logn)

34

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 35

Graphs

• A way of representing relationships between pairs of objects
• Consist of Vertices (V) with pairwise connections between them

Edges (E)
• A Graph G is a set of vertices and edges (V, E)

36

Edges

• An edge (u, v) connects vertices u and v
• Edges can be directed or undirected
• An edge is said to be incident to a vertex if the vertex is one of the

endpoints

37

Directed vs Undirected Graphs

38

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 39

Representing a graph

Adjacency List -

For each vertex v, we maintain a separate list containing the edges that
are outgoing from v

40

0 1

2

3

4

5

- Each index in the array
represents a vertex

Graph ADT

CS151 - Lecture 24 - Spring '24 - 4/22/24 41

Graph ADT

CS151 - Lecture 24 - Spring '24 - 4/22/24 42

Representing a graph

Let’s implement a graph as an Adjacency List

43

Representing a graph - Adjacency List

Runtime Complexity: (In terms of V and E rather than n)
- addVertex:

- O(V)

- addEdge:
- O(E)

- removeVertex:
- O(V*E)

- removeEdge:
- O(E)

44

Representing a graph

Adjacency Matrix -

each index in the array is another array

Maintains an VxV matrix

where each slot (i,j) represents an outgoing edge from i to j

45

0 1

2

3

4

5

1

1

1

1

1 1

Representing a graph

Let’s implement a graph as an Adjacency Matrix

46

Representing a graph - Adjacency Matrix

Runtime Complexity: (In terms of V and E rather than n)
- addVertex:

- O(V)

- addEdge:
- O(1)

- removeVertex:
- O(V)

- removeEdge:
- O(1)

47

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 48

Reachability

Reachability is determining if there exists a path between two vertices
in a graph

Common questions about graphs involve Reachability

• Does a path exist from vertex u to vertex v?
• Find all vertices that are reachable from v

49

Depth First Traversal

50

void DFS(root) {
for each child of root:

DFS(child)
}

Does this work for graphs?

Depth First Traversal

51

void DFS(root) {
for each child of root:

DFS(child)
}

How can we modify the code to deal
with cycles?

Keep track of what we’ve already visited!

Let’s code this for a Matrix Graph

0 1

2

3

4

5

Graphs

• Terminology
• Data Structures for Graphs

• Adjacency Lists
• Adjacency Matrix

• Traversals
• Shortest Paths

• Djikstra’s Algorithm

CS151 - Lecture 24 - Spring '24 - 4/22/24 52

Weighted Graphs

Edges have weights/costs

CS151 - Lecture 24 - Spring '24 - 4/22/24 53

A B
10

Shortest Paths

A path is defined as a set of edges

The length of a path is the sum of the weights of the edges

54

Shortest Paths

What is the length of the path P = ((SFO, DFW), (DFW, MIA), (MIA, JFK))

55

Shortest Paths

What is the shortest path from SFO to JFK?

There are many possible paths...

((SFO, ORD), (ORD, JFK))

((SFO, LAX), (LAX, MIA), (MIA, JFK))

((SFO, BOS), (BOS, JFK))

....

((SFO, DFW), (DFW, ORD), (ORD, JFK))

56

Dijkstra's algorithm

• graph search algorithm that finds the shortest path between nodes
in a weighted graph

• maintains a set of vertices whose shortest distance from the source
has already been determined
• uses a min heap to select the vertex with the smallest distance

57

Dijkstra's algorithm

1. init:
a. assign a init distance for each node
b. create a min-heap with source

2. while heap is non-empty:
a. poll node p
b. For each neighboring node not yet visited:

i. distance of neighbor = dist(p) + weight of edge (p, neighbor)
ii. if neighbor == dst: return dist
iii. If this distance is less than the current dist, update it.

c. update the heap if distances changed

58

