CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

CS151 - Lecture 24 - Spring '25 - 4/23/25

1

Announcements

LAST HOMEWORK - HW8 (AVL Trees) due May 7th

Start early!!!

Graphs: Extra credit lab

https://www.menti.com/al5eggvrtnhv

CS151 - Lecture 24 - Spring '25 - 4/23/25 2

Binary Search Tree Review

What can go wrong?

Balanced Binary Trees

Balanced Binary Trees

- Difference of heights of left and right subtrees at any node is at most 1
- Add an operation to BSTs to maintain balance:
 - Rotation

Move a child above its parent and relink subtrees Maintains BST order

- Used to maintain balance
- When should **rotate** be invoked?
 - Difference of heights of left and right subtrees at any node is > 1

- Assume heights of subtrees are equal
 h(T1) = h(T2) = h(T3) = h(T4)
- What is the height of the entire tree?
 h(T3) + 2
- What is the height of the left subtree of a?
 - h(T1)
- What is the height of the right subtree of a?
 - h(T4) + 2
- Is this tree balanced?

Right subtree is too large!

How can we rotate to fix this?

What should we make the root?

Rotations

Right rotation:

- Performed when left side is heavier
- left child becomes root

Left rotation:

- Performed when right side is heavier
- right child becomes root

Left or Right rotation?

Example 2:

Should we do a left or right rotation?

What will become the root?

Let's draw what it will look like after rotation

Example 2: Rotate Right

RotateRight Algorithm

1. Root.left =
 Pivot.right

2. Pivot.right = root

RotateLeft Algorithm

1. Root.right =
 Pivot.left

2. Pivot.left =
root

Example:

- 1. What is the height of the right and left subtrees?
- 2. Is this tree balanced?
- 3. Insert 140. Now, revisit questions (1) and (2)
- 4. Rotate? Which one?

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we're just updating links

Sometimes a single rotation is not enough to restore balance

Right child of a is too heavy.. because **Right subtree** of b is too heavy.. Single Left rotation on the root needed **Right** child of a is too heavy... because **Left subtree** of c is too heavy **Is a single rotation enough?**

- Rotate Right at c because right subtree of root is too heavy
- 2. Rotate Left at the root (a)

Double Rotation Example 2:

- Rotate Left at a because right subtree of root is too heavy
- 2. Rotate right at the root (c)

c = z T_1 double rotation a = y b = x T_4 T_1 T_2 T_2 T_3 T_4 T_1 T_2 T_3 T_4

Right subtree is too heavy because of **left** subtree of c

- 1. Rotate Right about c
- 2. Rotate Left about a

Left subtree is too heavy because of **right** subtree of a

- 1. Rotate Left about a
- 2. Rotate Right about c

When do we need a double rotation vs a single rotation?

Double rotation

Single rotation Do

Double rotation

Look for zig-zag pattern!

When do we need a double rotation?

Left subtree is too heavy on the right side rotateLeftRight

OR

Right subtree is too heavy on the left side rotateRightLeft

Double Rotation Code

```
def rotateLeftRight(n)
 n.left = rotateLeft(n.left);
 n = rotateRight(n);
```

```
def rotateRightLeft(n)
 n.right = rotateRight(n.right);
 n = rotateLeft(n);
```

Examples - which way should I rotate?

rotateLeft rotateRightLeft rotateRight rotateLeftRight

Summary: Tree rotation

- Can rotate to left or right
- Used to restore balance in height
- Rotation maintains BST order
- Runtime complexity of rotation?
 - O(1)

AVL Trees

AVL Trees

- "self balancing binary search tree"
- For every internal node, the heights of the two children differ by at most 1
- does rotations upon insert/removal if necessary

AVL Height

- We keep track of the height of each node as a field for quick access
 - height of a leaf is 1
- The height of an AVL tree is logn
 - Always balanced

Insertion

AVL Tree Example

Insert 54

Insertion (54)

New node always has height 1

Parent may change height

Which node do we "rebalance over"?

lowest subtree with diff(heights) > 1

Exercise

- Create an AVL tree by inserting the nodes in this order:
 - M, N, O, L, K, Q, P, H, I, A

AVL Animation

Rebalance Algorithm

```
If left.height > right.height + 1:
 if (left.right.height > left.left.height) //double rotate
     rotateLeftRight(n)
 else:
     rotateDight(n)
```

rotateRight(n)

```
else if right.height > left.height + 1:
 if (right.left.height > right.right.height) //double rotate
     rotateRightLeft(n)
 else:
```

```
rotateLeft(n)
```

Runtime Complexity:

Insertion (plus rotation)

- a. search + find node to rebalance + rotate
- b. O(logn) + O(logn) + O(1) = O(logn)

Deletion

Delete Example 1: 32

Delete Example 1: 32

Delete Example 2:78

Delete Example 2:78

rotateLeftRight

Delete Example 3: 20

Delete Example 3: 20

- Deletion can cause more than one rotation
- Worst case requires O(logn) rotations
 - deleting from a deepest leaf node and rotating each subtree up to the root

Removal

Runtime Complexity?

- a. search + find node to rebalance + rotate
- b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations? Why?

-> Even though we may need to find multiple nodes to rebalance we only traverse the height of the tree once

Performance of BSTs

Runtime complexity:

search? BST: O(n) AVL: O(logn)

Performance of BSTs

Runtime complexity:

insert? BST: O(n) AVL: O(logn)

Performance of BSTs

Runtime complexity:

remove? BST: O(n) AVL: O(logn)

Summary

AVL Trees:

BST with a rotate operation which maintains tree balance O(logn) operations

Rotations:

double rotation needed when Left subtree is too heavy on the right side OR Right subtree is too heavy on the left side (zig-zag pattern)

Rotations are constant time