
CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

1CS151 - Lecture 24 - Spring '25 - 4/23/25

Announcements

LAST HOMEWORK - HW8 (AVL Trees) due May 7th

Start early!!!

Graphs: Extra credit lab

https://www.menti.com/al5eggvrtnhv

2CS151 - Lecture 24 - Spring '25 - 4/23/25

Binary Search Tree Review

3

What can go wrong?

4

Complexity?

Search
O(n)

Insertion:
O(n)

Deletion:
O(n)

Balanced Binary Trees

5

Balanced Binary Trees

• Difference of heights of left and right subtrees at
any node is at most 1

• Add an operation to BSTs to maintain balance:
• Rotation

6

Rotation Operation

Move a child above its parent and relink subtrees

Maintains BST order

7

Rotation Operation

- Used to maintain balance

- When should rotate be invoked?
- Difference of heights of left and right subtrees at any node is > 1

8

9CS151 - Lecture 24 - Spring '25 - 4/23/25

Rotation Operation
● Assume heights of subtrees are equal

○ h(T1) = h(T2) = h(T3) = h(T4)
● What is the height of the entire tree?

○ h(T3) + 2
● What is the height of the left subtree

of a?
○ h(T1)

● What is the height of the right
subtree of a?
○ h(T4) + 2

● Is this tree balanced?

Rotation Operation

Right subtree is too large!

How can we rotate to fix this?

What should we make the root?

10

11CS151 - Lecture 24 - Spring '25 - 4/23/25

Rotations

Right rotation:

• Performed when left side is heavier

• left child becomes root

Left rotation:

• Performed when right side is heavier

• right child becomes root

CS151 - Lecture 24 - Spring '25 - 4/23/25 12

13CS151 - Lecture 24 - Spring '25 - 4/23/25

Left or Right rotation?

14CS151 - Lecture 24 - Spring '25 - 4/23/25

Example 2:

Should we do a left or right
rotation?

What will become the root?

Let’s draw what it will look like
after rotation

15CS151 - Lecture 24 - Spring '25 - 4/23/25

Example 2: Rotate Right

RotateRight Algorithm

1. Root.left =
Pivot.right

2. Pivot.right =
root

16

RotateLeft Algorithm

17

1. Root.right =
Pivot.left

2. Pivot.left =
root

Example:

18

1. What is the height of the
right and left subtrees?

2. Is this tree balanced?

3. Insert 140. Now, revisit
questions (1) and (2)

4. Rotate? Which one?

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we’re just updating links

19

Double Rotation
Sometimes a single rotation is not enough to restore balance

20

Double Rotation

21CS151 - Lecture 24 - Spring '25 - 4/23/25

Right child of a is too heavy.. because
Right subtree of b is too heavy..
Single Left rotation on the root needed

Right child of a is too heavy... because
Left subtree of c is too heavy
Is a single rotation enough?

Double Rotation

22

1. Rotate Right at c because
right subtree of root is too
heavy

2. Rotate Left at the root (a)

Double Rotation Example 2:

23

1. Rotate Left at a because
right subtree of root is too
heavy

2. Rotate right at the root (c)

24CS151 - Lecture 24 - Spring '25 - 4/23/25

Double Rotations

Right subtree is too heavy
because of left subtree of c
1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy
because of right subtree of a
1. Rotate Left about a
2. Rotate Right about c

Double Rotation

When do we need a double rotation vs a single rotation?

25

Double rotation Single rotation Double rotation

Look for zig-zag pattern!

Double rotation
When do we need a double rotation?

Left subtree is too heavy on the right side

rotateLeftRight

OR

Right subtree is too heavy on the left side

rotateRightLeft

26

Double Rotation Code

def rotateLeftRight(n)

n.left = rotateLeft(n.left);

n = rotateRight(n);

def rotateRightLeft(n)

n.right = rotateRight(n.right);

n = rotateLeft(n);

27

Examples - which way should I rotate?

28

rotateLeft rotateRightLeft rotateRight rotateLeftRight

Summary: Tree rotation

• Can rotate to left or right
• Used to restore balance in height
• Rotation maintains BST order
• Runtime complexity of rotation?

• O(1)

29

AVL Trees

30

AVL Trees

• “self balancing binary search tree”

• For every internal node, the heights of the two children differ by at
most 1

• does rotations upon insert/removal if necessary

31

AVL Height

• We keep track of the height of each node as a field for quick access

• height of a leaf is 1

• The height of an AVL tree is logn
• Always balanced

32

Insertion

33

AVL Tree Example

34CS151 - Lecture 24 - Spring '25 - 4/23/25

Insert 54

35CS151 - Lecture 24 - Spring '25 - 4/23/25

Insertion (54)

New node always has height 1

Parent may change height
36CS151 - Lecture 24 - Spring '25 - 4/23/25

Which node do we “rebalance over”?

lowest subtree with diff(heights) > 1

37

Exercise

•Create an AVL tree by inserting
the nodes in this order:
• M, N, O, L, K, Q, P, H, I, A

38CS151 - Lecture 24 - Spring '25 - 4/23/25

AVL Animation

39CS151 - Lecture 24 - Spring '25 - 4/23/25

Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height) //double rotate

rotateLeftRight(n)
else:

rotateRight(n)

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate

rotateRightLeft(n)
else:

rotateLeft(n)

40

Runtime Complexity:

Insertion (plus rotation)
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

41

Deletion

42

Delete Example 1: 32

43CS151 - Lecture 24 - Spring '25 - 4/23/25

Delete Example 1: 32

44CS151 - Lecture 24 - Spring '25 - 4/23/25

rotateLeft

Delete Example 2: 78

45

Delete Example 2: 78
rotateLeftRight

46

rotateLeft rotateRight

Delete Example 3: 20

47

rotateRight
rotateRight

Delete Example 3: 20

• Deletion can cause more than one rotation

• Worst case requires O(logn) rotations
• deleting from a deepest leaf node and rotating each subtree up to the root

48

Removal

Runtime Complexity?
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we
only traverse the height of the tree once

49

Performance of BSTs

50CS151 - Lecture 24 - Spring '25 - 4/23/25

Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

51CS151 - Lecture 24 - Spring '25 - 4/23/25

Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

52CS151 - Lecture 24 - Spring '25 - 4/23/25

Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)

Summary

AVL Trees:
BST with a rotate operation which maintains tree balance
O(logn) operations

Rotations:
double rotation needed when

 Left subtree is too heavy on the right side OR
 Right subtree is too heavy on the left side (zig-zag pattern)

Rotations are constant time

53

