
CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

1CS151 - Lecture 24 - Spring '25 - 4/23/25



Announcements

LAST HOMEWORK - HW8 (AVL Trees) due May 7th  

Start early!!!

Graphs: Extra credit lab 

https://www.menti.com/al5eggvrtnhv
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Binary Search Tree Review
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What can go wrong?
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Complexity? 

Search
O(n) 

Insertion:
O(n)

Deletion:
O(n)



Balanced Binary Trees
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Balanced Binary Trees

• Difference of heights of left and right subtrees at 
any node is at most 1

• Add an operation to BSTs to maintain balance:
• Rotation 
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Rotation Operation 

Move a child above its parent and relink subtrees

Maintains BST order 
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Rotation Operation 

- Used to maintain balance

- When should rotate be invoked?
- Difference of heights of left and right subtrees at any node is > 1
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Rotation Operation
● Assume heights of subtrees are equal

○ h(T1) = h(T2) = h(T3) = h(T4)
● What is the height of the entire tree?

○ h(T3) + 2 
● What is the height of the left subtree 

of a? 
○ h(T1) 

● What is the height of the right 
subtree of a? 
○ h(T4) + 2

● Is this tree balanced?



Rotation Operation 

Right subtree is too large!

How can we rotate to fix this? 

What should we make the root?
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Rotations

Right rotation:

• Performed when left side is heavier

• left child becomes root 

Left rotation:

• Performed when right side is heavier

• right child becomes root 
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Left or Right rotation?
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Example 2:

Should we do a left or right 
rotation?

What will become the root?

Let’s draw what it will look like 
after rotation 
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Example 2: Rotate Right



RotateRight Algorithm

1. Root.left =  
Pivot.right

2. Pivot.right = 
root
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RotateLeft Algorithm
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1. Root.right =  
Pivot.left

2. Pivot.left = 
root



Example:
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1. What is the height of the 
right and left subtrees?

2. Is this tree balanced?

3. Insert 140. Now, revisit 
questions (1) and (2)

4. Rotate? Which one?



Runtime Complexity

Runtime Complexity of rotation?

- O(1) 

Constant time... we’re just updating links

19



Double Rotation
Sometimes a single rotation is not enough to restore balance 
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Double Rotation
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Right child of a is too heavy.. because
Right subtree of b is too heavy.. 
Single Left rotation on the root needed

Right child of a is too heavy... because
Left subtree of c is too heavy 
Is a single rotation enough?



Double Rotation 
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1. Rotate Right at c because 
right subtree of root is too 
heavy 

2. Rotate Left at the root (a) 



Double Rotation Example 2:
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1. Rotate Left at a because 
right subtree of root is too 
heavy 

2. Rotate right at the root (c) 
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Double Rotations

Right subtree is too heavy 
because of left subtree of c
1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy 
because of right subtree of a
1. Rotate Left about a
2. Rotate Right about c



Double Rotation 

When do we need a double rotation vs a single rotation? 
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Double rotation Single rotation Double rotation

Look for zig-zag pattern!



Double rotation
When do we need a double rotation?

Left subtree is too heavy on the right side

rotateLeftRight 

OR

Right subtree is too heavy on the left side

rotateRightLeft
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Double Rotation Code 

def rotateLeftRight(n)

n.left = rotateLeft(n.left);

n = rotateRight(n);

def rotateRightLeft(n)

n.right = rotateRight(n.right);

n = rotateLeft(n);
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Examples - which way should I rotate?
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rotateLeft rotateRightLeft rotateRight rotateLeftRight



Summary: Tree rotation

• Can rotate to left or right
• Used to restore balance in height
• Rotation maintains BST order
• Runtime complexity of rotation?

• O(1)
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AVL Trees
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AVL Trees

• “self balancing binary search tree”

• For every internal node, the heights of the two children differ by at 
most 1

• does rotations upon insert/removal if necessary
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AVL Height

• We keep track of the height of each node as a field for quick access

• height of a leaf is 1

• The height of an AVL tree is logn 
• Always balanced
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Insertion
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AVL Tree Example
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Insert 54
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Insertion (54)

New node always has height 1

Parent may change height
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Which node do we “rebalance over”?

lowest subtree with diff(heights) > 1
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Exercise

•Create an AVL tree by inserting 
the nodes in this order:
• M, N, O, L, K, Q, P, H, I, A
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AVL Animation
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Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height)  //double rotate

rotateLeftRight(n)
else:

rotateRight(n) 

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate

rotateRightLeft(n)
else:

rotateLeft(n) 
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Runtime Complexity:

Insertion (plus rotation)
a. search   + find node to rebalance +  rotate 
b. O(logn) +           O(logn)        +  O(1) = O(logn)
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Deletion
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Delete Example 1: 32
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Delete Example 1: 32
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rotateLeft



Delete Example 2: 78
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Delete Example 2: 78
rotateLeftRight
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rotateLeft rotateRight



Delete Example 3: 20
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rotateRight
rotateRight



Delete Example 3: 20

• Deletion can cause more than one rotation 

• Worst case requires O(logn) rotations 
• deleting from a deepest leaf node and rotating each subtree up to the root
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Removal

Runtime Complexity? 
a. search   + find node to rebalance +  rotate
b. O(logn) +           O(logn)        +  O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we 
only traverse the height of the  tree once 
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Performance of BSTs
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Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)



Summary

AVL Trees: 
BST with a rotate operation which maintains tree balance
O(logn) operations

Rotations:
double rotation needed when

 Left subtree is too heavy on the right side OR
 Right subtree is too heavy on the left side  (zig-zag pattern)

Rotations are constant time
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