
CS151 Intro to Data Structures
AVL Trees

Splay Trees
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Announcements

April 29: No lab. Extra credit opportunity instead 

HW7 due Sunday 
HW8 released tonight - due May 9th 
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Outline

Review: Tree Rotation and AVL Trees

Splay Trees

Red-Black Trees
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Runtime Complexity

Runtime Complexity of rotation?

- O(1) 

Constant time... we’re just updating links
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Balanced Binary Trees

• Difference of heights of left and right subtrees at 
any node is at most 1

• Add an operation to BSTs to maintain balance:
• Rotation 
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Rotations

Right rotation:

• Performed when left side is heavier

• left child becomes root 

Left rotation:

• Performed when right side is heavier

• right child becomes root 
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RotateRight Algorithm

1. a.left =  
Pivot.right

2. Pivot.right = 
a
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RotateLeft Algorithm
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1. Root.right =  
Pivot.left

2. Pivot.left = 
roota

a

a
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Double Rotation
Sometimes a single rotation is not enough to restore balance 
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Double Rotation
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Right child of a is too heavy.. because
Right subtree of b is too heavy.. 
Single Left rotation on the root needed

Right child of a is too heavy... because
Left subtree of c is too heavy 
Is a single rotation enough?



Double Rotation 
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1. Rotate Right at c because 
right subtree of root is too 
heavy 

2. Rotate Left at the root (a) 



Double Rotation Example 2:
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1. Rotate Left at a because 
right subtree of root is too 
heavy 

2. Rotate right at the root (c) 
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Double Rotations

Right subtree is too heavy 
because of left subtree of c
1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy 
because of right subtree of a
1. Rotate Left about a
2. Rotate Right about c



Double Rotation 

When do we need a double rotation vs a single rotation? 
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Double rotation Single rotation Double rotation

Look for zig-zag pattern!



Double rotation
When do we need a double rotation?

Left subtree is too heavy on the right side

rotateLeftRight 

OR

Right subtree is too heavy on the left side

rotateRightLeft
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Double Rotation Code 

def rotateLeftRight(n)

n.left = rotateLeft(n.left);

n = rotateRight(n);

def rotateRightLeft(n)

n.right = rotateRight(n.right);

n = rotateLeft(n);
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Examples - which way should I rotate?
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rotateLeft rotateRightLeft rotateRight rotateLeftRight



AVL Trees
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AVL Trees

• “self balancing binary search tree”

• For every internal node, the heights of the two children differ by at 
most 1

• does rotations upon insert/removal if necessary
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AVL Height

• We keep track of the height of each node as a field for quick access

• The height of an AVL tree is logn 
• Always balanced
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Insertion
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AVL Tree Example

• leaves are sentinels and have height 0 
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Insert 54
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Insertion (54)

New node always has height 1

Parent may change height
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Which node do we “rebalance over”?

lowest subtree with diff(heights) > 1
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Exercise

•Create an AVL tree by inserting 
the nodes in this order:
• M, N, O, L, K, Q, P, H, I, A

26CS151 - Lecture 22 - Spring '24 - 4/15/24



AVL Animation
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Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height)  //double rotate

rotateLeftRight(n)
else:

rotateRight(n) 

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate

rotateRightLeft(n)
else:

rotateLeft(n) 
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Runtime Complexity:

Insertion (plus rotation)
a. search   + find node to rebalance +  rotate 
b. O(logn) +           O(logn)        +  O(1) = O(logn)
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Deletion

30



Delete Example 1: 32
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Delete Example 1: 32
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rotateLeft



Delete Example 2: 88
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Delete Example 2: 88
rotateLeftRight
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rotateLeft rotateRight



Delete Example 3: 20
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rotateRight
rotateRight



Delete Example 3: 20

• Deletion can cause more than one rotation 

• Worst case requires O(logn) rotations 
• deleting from a deepest leaf node and rotating each subtree up to the root
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Removal

Runtime Complexity? 
a. search   + find node to rebalance +  rotate
b. O(logn) +           O(logn)        +  O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we 
only traverse the height of the  tree once 
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Performance of BSTs
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Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)



Splay Trees
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Splay Trees

• No enforcement on height

• Instead, exploits principle of locality
• items that have been recently accessed are more likely to be accessed again 

in the near future

• “Move to root” operation 
• When a node is accessed (searched, inserted, or deleted), it becomes the 

root of the tree by performing a series of rotations called "splays"
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Splaying

• Move to root operation requires a zig / zag restructuring

• zig
a. accessed node becomes root of subtree
b. parent becomes child 
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Splaying - Zig 
• zig

a. accessed node becomes root of subtree
b. parent becomes child 
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Splaying: Zig-Zig
zig-zig:

• step 1: zig
a. accessed node’s parent (y) becomes root
b. parent becomes child 

• step 2: zig
a. accessed node (x) becomes root
b. parent becomes child 
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before after



zig-zig:

• step 1: zig
a. accessed node’s parent (4) becomes root
b. parent becomes child 

• step 2: zig
a. accessed node (3) becomes root
b. parent becomes child 
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Splaying: Zig-Zag

zig-zag:

• step 1: zig
a. accessed node (x) becomes root of subtree
b. parent becomes child 

• step 2: zag
a. accessed node (x) becomes root of tree
b. parent becomes child

Called zig-zag because the second step is a rotation

in the opposite direction
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before

after



Splaying: Zig-Zag
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Splaying: Zig-Zag and Zig-Zig

- Analogous to a double rotation in AVLs

- Zig-Zag
- Two rotations in opposite directions

- Zig-Zig
- Two rotations in the same direction
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Which Transformation to Perform

1. Zig: accessed node does not have a grandparent. Only one rotation 
required

2. Zig-Zig: accessed node and its parent are both children on the same 
side
a. x is the left child of y and y is the left child of z OR
b. x is the right child of y and y is the right child of z 

3. Zig-Zag: one of x and y is a right child and the other is a left child 
a. Analogous to double rotations in AVLs

51



Splaying

Repeating restructurings until the accessed node x is at the root of the 
tree. 

Series of zig, zig-zig, and zig-zag rotations 
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Example - insert(14)
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When/what to Splay
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on search for x:  if x is found, splay x. else splay x’s parent
 
on insert x: splay x after insertion 

on remove x:  splay parent of removed leaf node 



Deletion: remove(8)
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remove 8 and replace it with 7 
(largest node on left) 

splay 6 (parent of 
removed node)



Analysis of Splaying 

Runtime of restructuring operations:

1. zig
a. O(1)

2. zig-zig
a. O(1)

3. zig-zag
a. O(1)
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Analysis of Splaying

Splay trees do rotations after every operation (including search)

Each rotation is constant time.. 

What is the max number of rotations we may need to perform?
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insert(0)



Analysis of Splaying

Each rotation is constant time.. 

What is the max number of rotations we may need to perform? 

O(n)
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Analysis of Splaying 

Worst case:

- Search: 
- O(n)

- Remove:
- O(n)

- Insert:
- O(n)
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Analysis of Splaying

High cost operations often balance the tree
Amortized: O(logn)
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