CS151 Intro to Data Structures

AVL Trees
Splay Trees

Announcements

April 29: No lab. Extra credit opportunity instead
HW7 due Sunday
HW8 released tonight - due May 9th

Outline

Review: Tree Rotation and AVL Trees
Splay Trees
Red-Black Trees

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we're just updating links

Balanced Binary Trees

- Difference of heights of left and right subtrees at any node is at most 1
- Add an operation to BSTs to maintain balance:
- Rotation

Rotations

- right child becomes root

Right rotation:

- Performed when left side is heavier
- left child becomes root

Left rotation:

- Performed when right side is heavier

RotateRight Algorithm

$$
\begin{aligned}
\text { 1. } & \text { a.left }= \\
& \text { Pivot.right }
\end{aligned}
$$

2. Pivot.right $=$ a

RotateLeft Algorithm

Double Rotation

Sometimes a single rotation is not enough to restore balance

Double Rotation

Right child of a is too heavy.. because Right subtree of b is too heavy.. Single Left rotation on the root needed

Right child of a is too heavy... because Left subtree of c is too heavy Is a single rotation enough?

Double Rotation

1. Rotate Right at c because right subtree of root is too heavy
2. Rotate Left at the root (a)

Double Rotation Example 2:

1. Rotate Left at a because right subtree of root is too heavy
2. Rotate right at the root (c)

Double Rotations

Right subtree is too heavy because of left subtree of c

1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy because of right subtree of a 1. Rotate Left about a
2. Rotate Right about c

Double Rotation

When do we need a double rotation vs a single rotation?

Double rotation

Single rotation

Double rotation

Look for zig-zag pattern!

Double rotation

When do we need a double rotation?

Left subtree is too heavy on the right side rotateLeftRight

OR

Right subtree is too heavy on the left side rotateRightLeft

Double Rotation Code

def rotateLeftRight(n)
n.left = rotateLeft(n.left);
$\mathrm{n}=$ rotateRight(n);
def rotateRightLeft(n)
n.right = rotateRight(n.right);
$\mathrm{n}=$ rotateLeft(n);

Examples - which way should I rotate?

rotateLeft

rotateRightLeft

rotateRight

rotateLeftRight

AVL Trees

AVL Trees

- "self balancing binary search tree"
- For every internal node, the heights of the two children differ by at most 1
- does rotations upon insert/removal if necessary

AVL Height

- We keep track of the height of each node as a field for quick access
- The height of an AVL tree is logn
- Always balanced

Insertion

AVL Tree Example

- leaves are sentinels and have height 0

Insert 54

Insertion (54)

New node always has height 1 Parent may change height

Which node do we "rebalance over"?

lowest subtree with diff(heights) > 1

Exercise

- Create an AVL tree by inserting the nodes in this order:
- M, N, O, L, K, Q, P, H, I, A

AVL Animation

Rebalance Algorithm

If left.height > right.height +1 : if (left.right.height > left.left.height) //double rotate rotateLeftRight(n) else: rotateRight(n)
else if right.height > left.height +1 :
if (right.left.height > right.right.height) //double rotate rotateRightLeft(n)
else:
rotateLeft(n)

Runtime Complexity:

Insertion (plus rotation)
a. search + find node to rebalance + rotate
b. $O(\log n)+O(\log n) \quad+O(1)=\mathbf{O}(\log n)$

Deletion

Delete Example 1: 32

Delete Example 1: 32

rotateLeft

Delete Example 2: 88

Delete Example 2: 88

rotateLeftRight

Delete Example 3: 20

Delete Example 3: 20

- Deletion can cause more than one rotation
- Worst case requires O(logn) rotations
- deleting from a deepest leaf node and rotating each subtree up to the root

Removal

Runtime Complexity?
a. search + find node to rebalance + rotate
b. $\mathrm{O}(\log n)+\mathrm{O}(\log n) \quad+\mathrm{O}(1)=\mathbf{O}(\log n)$

Still O(logn) even though we may need multiple rotations?
Why?
-> Even though we may need to find multiple nodes to rebalance we only traverse the height of the tree once

Performance of BSTs

Runtime complexity:

search?
BST:
$\mathrm{O}(\mathrm{n})$
AVL:
O(logn)

Performance of BSTs

Runtime complexity:

insert?
BST:
$\mathrm{O}(\mathrm{n})$
AVL:
O(logn)

Performance of BSTs

Runtime complexity:

remove?
BST:
$\mathrm{O}(\mathrm{n})$
AVL:
O(logn)

Splay Trees

Splay Trees

- No enforcement on height
- Instead, exploits principle of locality
- items that have been recently accessed are more likely to be accessed again in the near future
. "Move to root" operation
- When a node is accessed (searched, inserted, or deleted), it becomes the root of the tree by performing a series of rotations called "splays"

The Splay Tree Idea

Splaying

- Move to root operation requires a zig / zag restructuring
- zig
a. accessed node becomes root of subtree
b. parent becomes child

before

after

Splaying - Zig

- zig
a. accessed node becomes root of subtree
b. parent becomes child

Splaying: Zig-Zig

zig-zig:

- step 1: zig
a. accessed node's parent (y) becomes root
b. parent becomes child
- step 2: zig
a. accessed node (x) becomes root
b. parent becomes child

zig-zig:

- step 1: zig
a. accessed node's parent (4) becomes root
b. parent becomes child

- step 2: zig

a. accessed node (3) becomes root
b. parent becomes child

Splaying: Zig-Zag

zig-zag:

- step 1: zig
a. accessed node (x) becomes root of subtree
b. parent becomes child

- step 2: zag
a. accessed node (x) becomes root of tree
b. parent becomes child

Called zig-zag because the second step is a rotation in the opposite direction

after

Splaying: Zig-Zag

Splaying: Zig-Zag and Zig-Zig

- Analogous to a double rotation in AVLs
- Zig-Zag
- Two rotations in opposite directions
- Zig-Zig
- Two rotations in the same direction

Which Transformation to Perform

1. Zig: accessed node does not have a grandparent. Only one rotation required
2. Zig-Zig: accessed node and its parent are both children on the same side
a. x is the left child of y and y is the left child of z OR
b. x is the right child of y and y is the right child of z
3. Zig-Zag: one of x and y is a right child and the other is a left child a. Analogous to double rotations in AVLs

Splaying

Repeating restructurings until the accessed node x is at the root of the tree.

Series of zig, zig-zig, and zig-zag rotations

Example - insert(14)

When/what to Splay

on search for x : if x is found, splay x . else splay x 's parent
on insert x : splay x after insertion

on remove x: splay parent of removed leaf node

Deletion: remove(8)

remove 8 and replace it with 7
(largest node on left)

Analysis of Splaying

Runtime of restructuring operations:

1. zig
a. $\mathrm{O}(1)$
2. zig-zig
a. $\mathrm{O}(1)$
3. zig-zag
a. $\mathrm{O}(1)$

Analysis of Splaying

Splay trees do rotations after every operation (including search)

Each rotation is constant time..

What is the max number of rotations we may need to perform?

insert(0)

Analysis of Splaying

Each rotation is constant time..

What is the max number of rotations we may need to perform?

O(n)

Analysis of Splaying

Worst case:

- Search:
- O(n)
- Remove:
- O(n)
- Insert:
- O(n)

Analysis of Splaying

High cost operations often balance the tree Amortized: O(logn)

