
CS151 Intro to Data Structures
AVL Trees

Splay Trees

1CS151 - Lecture 23 - Spring '24 - 4/17/24

Announcements

April 29: No lab. Extra credit opportunity instead

HW7 due Sunday
HW8 released tonight - due May 9th

2CS151 - Lecture 23 - Spring '24 - 4/17/24

Outline

Review: Tree Rotation and AVL Trees

Splay Trees

Red-Black Trees

CS151 - Lecture 23 - Spring '24 - 4/17/24 3

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we’re just updating links

4

Balanced Binary Trees

• Difference of heights of left and right subtrees at
any node is at most 1

• Add an operation to BSTs to maintain balance:
• Rotation

5

Rotations

Right rotation:

• Performed when left side is heavier

• left child becomes root

Left rotation:

• Performed when right side is heavier

• right child becomes root

CS151 - Lecture 22 - Spring '24 - 4/15/24 6

RotateRight Algorithm

1. a.left =
Pivot.right

2. Pivot.right =
a

7

a

a a

a

RotateLeft Algorithm

8

1. Root.right =
Pivot.left

2. Pivot.left =
roota

a

a

a

Double Rotation
Sometimes a single rotation is not enough to restore balance

9

Double Rotation

10CS151 - Lecture 22 - Spring '24 - 4/15/24

Right child of a is too heavy.. because
Right subtree of b is too heavy..
Single Left rotation on the root needed

Right child of a is too heavy... because
Left subtree of c is too heavy
Is a single rotation enough?

Double Rotation

11

1. Rotate Right at c because
right subtree of root is too
heavy

2. Rotate Left at the root (a)

Double Rotation Example 2:

12

1. Rotate Left at a because
right subtree of root is too
heavy

2. Rotate right at the root (c)

13CS151 - Lecture 22 - Spring '24 - 4/15/24

Double Rotations

Right subtree is too heavy
because of left subtree of c
1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy
because of right subtree of a
1. Rotate Left about a
2. Rotate Right about c

Double Rotation

When do we need a double rotation vs a single rotation?

14

Double rotation Single rotation Double rotation

Look for zig-zag pattern!

Double rotation
When do we need a double rotation?

Left subtree is too heavy on the right side

rotateLeftRight

OR

Right subtree is too heavy on the left side

rotateRightLeft

15

Double Rotation Code

def rotateLeftRight(n)

n.left = rotateLeft(n.left);

n = rotateRight(n);

def rotateRightLeft(n)

n.right = rotateRight(n.right);

n = rotateLeft(n);

16

Examples - which way should I rotate?

17

rotateLeft rotateRightLeft rotateRight rotateLeftRight

AVL Trees

18

AVL Trees

• “self balancing binary search tree”

• For every internal node, the heights of the two children differ by at
most 1

• does rotations upon insert/removal if necessary

19

AVL Height

• We keep track of the height of each node as a field for quick access

• The height of an AVL tree is logn
• Always balanced

20

Insertion

21

AVL Tree Example

• leaves are sentinels and have height 0

22CS151 - Lecture 22 - Spring '24 - 4/15/24

Insert 54

23CS151 - Lecture 22 - Spring '24 - 4/15/24

Insertion (54)

New node always has height 1

Parent may change height
24CS151 - Lecture 22 - Spring '24 - 4/15/24

Which node do we “rebalance over”?

lowest subtree with diff(heights) > 1

25

Exercise

•Create an AVL tree by inserting
the nodes in this order:
• M, N, O, L, K, Q, P, H, I, A

26CS151 - Lecture 22 - Spring '24 - 4/15/24

AVL Animation

27CS151 - Lecture 22 - Spring '24 - 4/15/24

Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height) //double rotate

rotateLeftRight(n)
else:

rotateRight(n)

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate

rotateRightLeft(n)
else:

rotateLeft(n)

28

Runtime Complexity:

Insertion (plus rotation)
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

29

Deletion

30

Delete Example 1: 32

31CS151 - Lecture 22 - Spring '24 - 4/15/24

Delete Example 1: 32

32CS151 - Lecture 22 - Spring '24 - 4/15/24

rotateLeft

Delete Example 2: 88

33

Delete Example 2: 88
rotateLeftRight

34

rotateLeft rotateRight

Delete Example 3: 20

35

rotateRight
rotateRight

Delete Example 3: 20

• Deletion can cause more than one rotation

• Worst case requires O(logn) rotations
• deleting from a deepest leaf node and rotating each subtree up to the root

36

Removal

Runtime Complexity?
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we
only traverse the height of the tree once

37

Performance of BSTs

38CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

39CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

40CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)

Splay Trees

41

Splay Trees

• No enforcement on height

• Instead, exploits principle of locality
• items that have been recently accessed are more likely to be accessed again

in the near future

• “Move to root” operation
• When a node is accessed (searched, inserted, or deleted), it becomes the

root of the tree by performing a series of rotations called "splays"

42

43

Splaying

• Move to root operation requires a zig / zag restructuring

• zig
a. accessed node becomes root of subtree
b. parent becomes child

44before after

Splaying - Zig
• zig

a. accessed node becomes root of subtree
b. parent becomes child

45

Splaying: Zig-Zig
zig-zig:

• step 1: zig
a. accessed node’s parent (y) becomes root
b. parent becomes child

• step 2: zig
a. accessed node (x) becomes root
b. parent becomes child

46

before after

zig-zig:

• step 1: zig
a. accessed node’s parent (4) becomes root
b. parent becomes child

• step 2: zig
a. accessed node (3) becomes root
b. parent becomes child

47

Splaying: Zig-Zag

zig-zag:

• step 1: zig
a. accessed node (x) becomes root of subtree
b. parent becomes child

• step 2: zag
a. accessed node (x) becomes root of tree
b. parent becomes child

Called zig-zag because the second step is a rotation

in the opposite direction

48

before

after

Splaying: Zig-Zag

49

Splaying: Zig-Zag and Zig-Zig

- Analogous to a double rotation in AVLs

- Zig-Zag
- Two rotations in opposite directions

- Zig-Zig
- Two rotations in the same direction

50

Which Transformation to Perform

1. Zig: accessed node does not have a grandparent. Only one rotation
required

2. Zig-Zig: accessed node and its parent are both children on the same
side
a. x is the left child of y and y is the left child of z OR
b. x is the right child of y and y is the right child of z

3. Zig-Zag: one of x and y is a right child and the other is a left child
a. Analogous to double rotations in AVLs

51

Splaying

Repeating restructurings until the accessed node x is at the root of the
tree.

Series of zig, zig-zig, and zig-zag rotations

52

Example - insert(14)

53CS151 - Lecture 23 - Spring '24 - 4/17/24

When/what to Splay

54CS151 - Lecture 23 - Spring '24 - 4/17/24

on search for x: if x is found, splay x. else splay x’s parent

on insert x: splay x after insertion

on remove x: splay parent of removed leaf node

Deletion: remove(8)

55CS151 - Lecture 23 - Spring '24 - 4/17/24

remove 8 and replace it with 7
(largest node on left)

splay 6 (parent of
removed node)

Analysis of Splaying

Runtime of restructuring operations:

1. zig
a. O(1)

2. zig-zig
a. O(1)

3. zig-zag
a. O(1)

56

Analysis of Splaying

Splay trees do rotations after every operation (including search)

Each rotation is constant time..

What is the max number of rotations we may need to perform?

57

insert(0)

Analysis of Splaying

Each rotation is constant time..

What is the max number of rotations we may need to perform?

O(n)

58

Analysis of Splaying

Worst case:

- Search:
- O(n)

- Remove:
- O(n)

- Insert:
- O(n)

59

Analysis of Splaying

High cost operations often balance the tree
Amortized: O(logn)

60

