CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

CS151 - Lecture 22 - Spring '24 - 4/15/24 1

Announcements

HW 7 and Lab9 (Hash Maps) due Sunday

CS151 - Lecture 22 - Spring '24 - 4/15/24 2

Outline

Sorting review Balanced BSTs

Merge sort


```
Example - summary
```


Merge - how do we sort two sorted lists?

```
Algorithm merge(A, B)
S = []
```

```
while(!A.isEmpty() and !B.isEmpty())
if A[0] < B[0]
    S.add(A.removeFirst())
else
    S.add(B.removeFirst())</pre>
```

```
while (!A.isEmpty())
    S.add(A.removeFirst())
while (!B.isEmpty())
    S.add(B.removeFirst())
return S
```

runtime complexity? O(n)

where n is A.length + B.length

Merge Sort Implementation

Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| = n: O(n)

How many times do we merge two sorted lists? log n times

So total runtime is: O(n * log(n))

Quicksort

Quicksort

- Divide and conquer
- **Divide:** select a *pivot* and create three sequences:
 - a. L: stores elements less than the pivot
 - b. E: stores elements equal to the pivot
 - c. G: stores elements greater than the pivot
- Conquer: recursively sort L and G
- Combine: L + E + G is a sorted list

Quick Sort

Sort [2, 6, 5, 3, 8, 7, 1, 0]

- 1. choose a pivot
- 2. swap pivot to the end of the array
- 3. Find two items:
 - a. left which is larger than our pivot
 - b. right which is smaller than our pivot
- 4. swap left and right
- 5. repeat 3 and 4 until right < left
- 6. swap left and pivot
- 7. Sort L E and R recursively

Quick Sort - Choosing a pivot

What if we chose our pivot to be 1?

We want a pivot that divides our list as evenly as possible.

Median-of-three: look at the first, middle, and last elems in the array, and pick the middle element.

Quicksort runtime complexity

Bad pivot: O(n^2)

Good pivot: O(nlogn)

Summary of Sorting Algorithms

Algorithm	Time
selection-sort	
heap-sort	
merge-sort	
quick-sort	

Binary Search Tree Review

Binary Trees: Height

Height of a tree:

Maximum number of edges from a leaf node to the root

Height? 2 $\log_2(7) \approx 2$

Tree Review

Height? 3 $\log_2(9) \approx 3$

Height of a binary tree is roughly log(n) where n is number of nodes

Binary Search Trees

Binary Search Trees

Definition:

- At each node with value k
 - Left subtree contains only nodes with value lesser than k
 - Right subtree contains only nodes with value greater than k
 - Both subtrees are a **binary** search tree

Exercise One: Binary Search Trees

Exercise One: Binary Search Trees

Exercise One: Binary Search Trees

Today's Lecture

- 1. Binary Search Trees
- 2. Search
- 3. Insertion
- 4. Removal
- 5. Summary

Binary Search Trees: Efficient Search

BSTs: Search Implementation

BSTs: Search Implementation

search(Node(80), 85)
search(Node(90), 85)
search(Node(85), 85)

Today's Lecture

- 1. Binary Search Trees
- 2. Search

3. Insertion

- 4. Removal
- 5. Summary

Binary Search Trees: Insertion

Binary Search Trees: Insertion

40

Today's Lecture

- 1. Binary Search Trees
- 2. Search
- 3. Insertion
- 4. Removal
- 5. Summary

43

Deletion must maintain the properties of a BST!

Delete: <u>80</u>

At each node with value k

- Left subtree contains only nodes with value **lesser** than **k**
- Right subtree contains only nodes with value greater than k
- Both subtrees are a **binary** search tree

Deletion must maintain the properties of a BST!

Delete: <u>80</u>

Replace deleted node with either:

- 1. Smallest value in right subtree
- 2. Largest value in left subtree

Complexity?

Case I: Removing a **leaf node** O(log n)

Case 2: Removing a **node with one child** O(log n)

Case 3: Removing a **node with two children** O(log n)

What can go wrong?

Balanced Binary Trees

Balanced Binary Trees

- Difference of heights of left and right subtrees at any node is at most 1
- Add an operation to BSTs to maintain balance:
 - Rotation

Rotation

Move a child above its parent and relink subtrees Maintains BST order

Rotations

- Assume heights of subtrees are equal
 h(T1) = h(T2) = h(T3) = h(T4)
- What is the height of the entire tree?
 h(T3) + 2
- What is the height of the left subtree of a?
 - h(T1)
- What is the height of the right subtree of a?
 - h(T4) + 2
- Is this tree balanced?

Rotations

Right subtree is too large!

How can we rotate to fix this?

What should we make the root?

Rotations

Right rotation:

- Performed when left side is heavier
- left child becomes root

Left rotation:

- Performed when right side is heavier
- right child becomes root

Left or Right rotation?

Example 2:

Should we do a left or right rotation?

What will become the root?

Let's draw what it will look like after rotation

Example 2: Rotate Right

RotateRight Algorithm

1. Root.left =
 Pivot.right

2. Pivot.right = root

RotateLeft Algorithm

1. Root.right =
 Pivot.left

2. Pivot.left =
 root

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we're just updating links

Sometimes a single rotation is not enough to restore balance

Right child of a is too heavy.. because **Right subtree** of b is too heavy.. Single Left rotation on the root needed **Right** child of a is too heavy... because **Left subtree** of c is too heavy **Is a single rotation enough?**

- 1. **Rotate Right** at c because right subtree of root is too heavy
- 2. Rotate Left at the root (a)

Double Rotation Example 2:

- 1. Rotate Left at a because right subtree of root is too heavy
- 2. Rotate right at the root (c)

c = z T_1 double rotation a = y b = x T_4 T_1 T_2 T_2 T_3 T_4 T_1 T_2 T_3 T_4

Right subtree is too heavy because of **left** subtree of c

- 1. Rotate Right about c
- 2. Rotate Left about a

Left subtree is too heavy because of right subtree of a

- 1. Rotate Left about a
- 2. Rotate Right about c

When do we need a double rotation vs a single rotation?

Double rotation

Single rotation Do

Double rotation

Look for zig-zag pattern!

When do we need a double rotation?

Left subtree is too heavy on the right side rotateLeftRight

OR

Right subtree is too heavy on the left side rotateRightLeft

Double Rotation Code

```
def rotateLeftRight(n)
    n.left = rotateLeft(n.left);
    n = rotateRight(n);
```

```
def rotateRightLeft(n)
    n.right = rotateRight(n.right);
    n = rotateLeft(n);
```

Examples - which way should I rotate?

rotateLeft rotateRightLeft rotateRight rotateLeftRight

Summary: Tree rotation

- Can rotate to left or right
- Used to restore balance in height
- Rotation maintains BST order
- Runtime complexity of rotation?
 - O(1)

AVL Trees

AVL Trees

- "self balancing binary search tree"
- For every internal node, the heights of the two children differ by at most 1
- does rotations upon insert/removal if necessary

AVL Height

- We keep track of the height of each node as a field for quick access
- The height of an AVL tree is logn
 - Always balanced

Insertion

AVL Tree Example

leaves are sentinels and have height 0

Insert 54

Insertion (54)

New node always has height 1

Parent may change height

Which node do we "rebalance over"?

lowest subtree with diff(heights) > 1

Exercise

- Create an AVL tree by inserting the nodes in this order:
 - M, N, O, L, K, Q, P, H, I, A

AVL Animation

Rebalance Algorithm

```
If left.height > right.height + 1:
    if (left.right.height > left.left.height) //double rotate
        rotateLeftRight(n)
    else:
        rotateDight(n)
```

rotateRight(n)

```
else if right.height > left.height + 1:
    if (right.left.height > right.right.height) //double rotate
        rotateRightLeft(n)
    else:
```

```
rotateLeft(n)
```

Runtime Complexity:

Insertion (plus rotation)

- a. search + find node to rebalance + rotate
- b. O(logn) + O(logn) + O(1) = O(logn)

Deletion

Delete Example 1: 32

Delete Example 1: 32

Delete Example 2:88

Delete Example 2:88

rotateLeftRight

Delete Example 3: 20

Delete Example 3: 20

- Deletion can cause more than one rotation
- Worst case requires O(logn) rotations
 - deleting from a deepest leaf node and rotating each subtree up to the root

Removal

Runtime Complexity?

- a. search + find node to rebalance + rotate
- b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations? Why?

-> Even though we may need to find multiple nodes to rebalance we only traverse the height of the tree once

Performance of BSTs

Runtime complexity:

search? BST: O(n) AVL: O(logn)

Performance of BSTs

Runtime complexity:

insert? BST: O(n) AVL: O(logn)

Performance of BSTs

Runtime complexity:

remove? BST: O(n) AVL: O(logn)