
CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

1CS151 - Lecture 22 - Spring '24 - 4/15/24

Announcements

HW 7 and Lab9 (Hash Maps) due Sunday

2CS151 - Lecture 22 - Spring '24 - 4/15/24

Outline

Sorting review

Balanced BSTs

CS151 - Lecture 22 - Spring '24 - 4/15/24 3

Merge sort

4

Example

5CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

Example

6CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

Example

7CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

Example

8CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

Example

9CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

Example

10CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

Example

11CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

Example

12CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

Example

13CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

Example

14CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

Example

15CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

1 2 3 4 5 6 7 8

Example - summary

16CS151 - Lecture 21 - Spring '24 - 4/10/24

Merge - how do we sort two sorted lists?

17

Algorithm merge(A, B)
 S = []

 while(!A.isEmpty() and !B.isEmpty())
if A[0] < B[0]
 S.add(A.removeFirst())
else
 S.add(B.removeFirst())

while (!A.isEmpty())
S.add(A.removeFirst())

while (!B.isEmpty())
 S.add(B.removeFirst())
return S

runtime complexity?
O(n)

where n is A.length +
B.length

Merge Sort Implementation

18

Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| = n :

O(n)

How many times do we merge two sorted lists?

log n times

So total runtime is:

O(n * log(n))

CS151 - Lecture 21 - Spring '24 - 4/10/24 19

Quicksort

20

Quicksort

• Divide and conquer
• Divide: select a pivot and create three sequences:

a. L: stores elements less than the pivot
b. E: stores elements equal to the pivot
c. G: stores elements greater than the pivot

• Conquer: recursively sort L and G
• Combine: L + E + G is a sorted list

21

Quick Sort

Sort [2, 6, 5, 3, 8, 7, 1, 0]

1. choose a pivot
2. swap pivot to the end of the array
3. Find two items:

a. left which is larger than our pivot
b. right which is smaller than our pivot

4. swap left and right
5. repeat 3 and 4 until right < left
6. swap left and pivot
7. Sort L E and R recursively

22

Quick Sort - Choosing a pivot

What if we chose our pivot to be 1?

We want a pivot that divides our list as evenly as possible.

Median-of-three: look at the first, middle, and last elems in the array,
and pick the middle element.

23

Quicksort runtime complexity

Bad pivot:

O(n^2)

Good pivot:

O(nlogn)

24

Summary of Sorting Algorithms

25CS151 - Lecture 21 - Spring '24 - 4/10/24

Algorithm Time

selection-sort

heap-sort

merge-sort

quick-sort

Binary Search Tree Review

26

Height of a tree:
Maximum number of edges
from a leaf node to the root

27

Binary Trees: Height

Height? 2

log2 (7) ≈ 2

28

Tree Review

Height? 3

log2 (9) ≈ 3

Height of a binary tree is
roughly log(n) where n is
number of nodes

Binary Search Trees

29

Definition:
At each node with value k

- Left subtree contains only nodes
with value lesser than k

- Right subtree contains only nodes
with value greater than k

- Both subtrees are a binary
search tree

30

Binary Search Trees

Is this a binary search tree?

31

Exercise One: Binary Search Trees

Is this a binary search tree?

32

Exercise One: Binary Search Trees

33

Exercise One: Binary Search Trees

Is this a binary search tree?

34

Today’s Lecture

1. Binary Search Trees
2. Search
3. Insertion
4. Removal
5. Summary

Goal: Report if a value exists in the tree
Target: 85

35

Binary Search Trees: Efficient Search

if target > k:
Move right

else:
Move Left

85 > 80?

85 > 90?

Complexity?
 O(log n)

BSTs: Search Implementation

36

37

BSTs: Search Implementation
search(Node(80), 85)

search(Node(90), 85)
search(Node(85), 85)

38

Today’s Lecture

1. Binary Search Trees
2. Search
3. Insertion
4. Removal
5. Summary

Insertion must maintain the properties of a BST!

39

Binary Search Trees: Insertion

Insert: 150

Insertion must maintain the properties of a BST!

40

Binary Search Trees: Insertion

Insert: 64

Complexity?
O(log n)

41

Today’s Lecture

1. Binary Search Trees
2. Search
3. Insertion
4. Removal
5. Summary

Deletion must maintain the properties of a BST!

42

Binary Search Trees: Deletion

Delete: 150

Deletion must maintain the properties of a BST!

43

Binary Search Trees: Deletion

Delete: 70

Deletion must maintain the properties of a BST!

44

Binary Search Trees: Deletion

Delete: 80
At each node with value k

- Left subtree contains only nodes
with value lesser than k

- Right subtree contains only nodes
with value greater than k

- Both subtrees are a binary
search tree

Replace with 90?

45

Binary Search Trees: Deletion

Delete: 80

46

Binary Search Trees: Deletion

Delete: 80

Replace with 85?

47

Binary Search Trees: Deletion

Delete: 80

Replace with 60?

48

Binary Search Trees: Deletion

Delete: 80

Replace with 64?

Deletion must maintain the properties of a BST!

49

Binary Search Trees: Deletion

Delete: 80

Replace deleted node with either:

1. Smallest value in right
subtree

2. Largest value in left subtree

50

Binary Search Trees: Deletion

Case 1: Removing a leaf node
O(log n)

Case 2: Removing a node with one child
O(log n)

Case 3: Removing a node with two children
O(log n)

Complexity?

What can go wrong?

51

Complexity?

Search
O(n)

Insertion:
O(n)

Deletion:
O(n)

Balanced Binary Trees

52

Balanced Binary Trees

• Difference of heights of left and right subtrees at
any node is at most 1

• Add an operation to BSTs to maintain balance:
• Rotation

53

Rotation

Move a child above its parent and relink subtrees

Maintains BST order

54

55CS151 - Lecture 22 - Spring '24 - 4/15/24

Rotations
● Assume heights of subtrees are equal

○ h(T1) = h(T2) = h(T3) = h(T4)
● What is the height of the entire tree?

○ h(T3) + 2
● What is the height of the left subtree

of a?
○ h(T1)

● What is the height of the right
subtree of a?
○ h(T4) + 2

● Is this tree balanced?

Rotations

Right subtree is too large!

How can we rotate to fix this?

What should we make the root?

56

57CS151 - Lecture 22 - Spring '24 - 4/15/24

Rotations

Right rotation:

• Performed when left side is heavier

• left child becomes root

Left rotation:

• Performed when right side is heavier

• right child becomes root

CS151 - Lecture 22 - Spring '24 - 4/15/24 58

59CS151 - Lecture 22 - Spring '24 - 4/15/24

Left or Right rotation?

60CS151 - Lecture 22 - Spring '24 - 4/15/24

Example 2:

Should we do a left or right
rotation?

What will become the root?

Let’s draw what it will look like
after rotation

61CS151 - Lecture 22 - Spring '24 - 4/15/24

Example 2: Rotate Right

RotateRight Algorithm

1. Root.left =
Pivot.right

2. Pivot.right =
root

62

RotateLeft Algorithm

63

1. Root.right =
Pivot.left

2. Pivot.left =
root

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we’re just updating links

64

Double Rotation
Sometimes a single rotation is not enough to restore balance

65

Double Rotation

66CS151 - Lecture 22 - Spring '24 - 4/15/24

Right child of a is too heavy.. because
Right subtree of b is too heavy..
Single Left rotation on the root needed

Right child of a is too heavy... because
Left subtree of c is too heavy
Is a single rotation enough?

Double Rotation

67

1. Rotate Right at c because
right subtree of root is too
heavy

2. Rotate Left at the root (a)

Double Rotation Example 2:

68

1. Rotate Left at a because
right subtree of root is too
heavy

2. Rotate right at the root (c)

69CS151 - Lecture 22 - Spring '24 - 4/15/24

Double Rotations

Right subtree is too heavy
because of left subtree of c
1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy
because of right subtree of a
1. Rotate Left about a
2. Rotate Right about c

Double Rotation

When do we need a double rotation vs a single rotation?

70

Double rotation Single rotation Double rotation

Look for zig-zag pattern!

Double rotation
When do we need a double rotation?

Left subtree is too heavy on the right side

rotateLeftRight

OR

Right subtree is too heavy on the left side

rotateRightLeft

71

Double Rotation Code

def rotateLeftRight(n)

n.left = rotateLeft(n.left);

n = rotateRight(n);

def rotateRightLeft(n)

n.right = rotateRight(n.right);

n = rotateLeft(n);

72

Examples - which way should I rotate?

73

rotateLeft rotateRightLeft rotateRight rotateLeftRight

Summary: Tree rotation

• Can rotate to left or right
• Used to restore balance in height
• Rotation maintains BST order
• Runtime complexity of rotation?

• O(1)

74

AVL Trees

75

AVL Trees

• “self balancing binary search tree”

• For every internal node, the heights of the two children differ by at
most 1

• does rotations upon insert/removal if necessary

76

AVL Height

• We keep track of the height of each node as a field for quick access

• The height of an AVL tree is logn
• Always balanced

77

Insertion

78

AVL Tree Example

• leaves are sentinels and have height 0

79CS151 - Lecture 22 - Spring '24 - 4/15/24

Insert 54

80CS151 - Lecture 22 - Spring '24 - 4/15/24

Insertion (54)

New node always has height 1

Parent may change height
81CS151 - Lecture 22 - Spring '24 - 4/15/24

Which node do we “rebalance over”?

lowest subtree with diff(heights) > 1

82

Exercise

•Create an AVL tree by inserting
the nodes in this order:
• M, N, O, L, K, Q, P, H, I, A

83CS151 - Lecture 22 - Spring '24 - 4/15/24

AVL Animation

84CS151 - Lecture 22 - Spring '24 - 4/15/24

Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height) //double rotate

rotateLeftRight(n)
else:

rotateRight(n)

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate

rotateRightLeft(n)
else:

rotateLeft(n)

85

Runtime Complexity:

Insertion (plus rotation)
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

86

Deletion

87

Delete Example 1: 32

88CS151 - Lecture 22 - Spring '24 - 4/15/24

Delete Example 1: 32

89CS151 - Lecture 22 - Spring '24 - 4/15/24

rotateLeft

Delete Example 2: 88

90

Delete Example 2: 88
rotateLeftRight

91

rotateLeft rotateRight

Delete Example 3: 20

92

rotateRight
rotateRight

Delete Example 3: 20

• Deletion can cause more than one rotation

• Worst case requires O(logn) rotations
• deleting from a deepest leaf node and rotating each subtree up to the root

93

Removal

Runtime Complexity?
a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we
only traverse the height of the tree once

94

Performance of BSTs

95CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

96CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)

Performance of BSTs

97CS151 - Lecture 22 - Spring '24 - 4/15/24

Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)

