CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

CS151 - Lecture 22 - Spring '24 - 4/15/24 1

Announcements

HW 7 and Lab9 (Hash Maps) due Sunday

CS151 - Lecture 22 - Spring '24 - 4/15/24 2

Outline

Sorting review
Balanced BSTs

Merge sort

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

10

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

11

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

12

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

13

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

14

Example

1| 2 6|78
1146 23|57
6|8 1 7/ 315
6 8| |4 2 5 3

CS151 - Lecture 21 - Spring '24 - 4/10/24

15

Example - summary

Input Output
6lslal1|7[2]5]3 ! 1[2[3[4]5]6]7]8
- ~ «— split | i “ <« Imerge
68|41 i |29 |3 114168 8| a|F
< . =—split A ™ S~ N\ < merge
618 411 7| 2 5|3 6|8 1|4 2|7 3 | o
/N 4 N 4 N 4 N—split /N A X/ N X< merge
O | |8 | |4l L] [2]]3] |8 = = 6| 18] |4 |LIIT]|12]]|9] |3

CS151 - Lecture 21 - Spring '24 - 4/10/24

16

Merge - how do we sort two sorted lists?

Algorithm merge (A, B)
S = []

while (!A.1sEmpty () and !B.isEmpty())
if A[O0O] < B[O]
S.add (A.removeFirst ())
else
S.add (B.removeFirst ())

while (!'A.isEmpty())

S.add (A.removeFirst ())
while (!B.isEmpty())

S.add (B.removeFirst ())
return S

runtime complexity?
O(n)

where n is A.length +
B.length

Merge Sort Implementation

Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| =n:
O(n)

How many times do we merge two sorted lists?

log n times

So total runtime is:
O(n * log(n))

Quicksort

Quicksort

Divide and conquer

. Divide: select a pivot and create three sequences:
a. L:stores elements less than the pivot
b. E:stores elements equal to the pivot
c. G:stores elements greater than the pivot

- Conquer: recursively sort L and G

. Combine: L+ E + Gis a sorted list

Quick Sort

Sort [2,6,5,3,8,7,1,0]

1.
2.
3.

N o ok

choose a pivot

swap pivot to the end of the array
Find two items:

a. left which is larger than our pivot
b. right which is smaller than our pivot

swap left and right

repeat 3 and 4 until right < left
swap left and pivot

Sort L E and R recursively

Quick Sort - Choosing a pivot

What if we chose our pivot to be 1°?
We want a pivot that divides our list as evenly as possible.

Median-of-three: look at the first, middle, and last elems in the array,
and pick the middle element.

Quicksort runtime complexity

Bad pivot:
O(n”2)

Good pivot:
O(nlogn)

Summary of Sorting Algorithms

Algorithm Time

selection-sort

heap-sort

merge-sort

quick-sort

Binary Search Tree Review

Binary Trees: Height
Height of a tree: °
Maximum number of edges
from a leaf node to the root ° »
e O10I010

log, (7) = 2

Tree Review

Height? 3 0
og, (9) = 3 (=) (=)

Height of a binary tree is c 0 ° G

roughly log(n) where n is

number of nodes c o

28

Binary Search Trees

Binary Search Trees

Definition:

At each node with value k

- Left subtree contains only nodes
with value lesser than k

- Both subtrees are a binary
search tree

Exercise One: Binary Search Trees

Is this a binary search tree! 6

31

Exercise One: Binary Search Trees

Is this a binary search tree! a ° 0

32

Exercise One: Binary Search Trees

Is this a binary search tree!

33

Today’s Lecture

RN~

Binary Search Trees
Search

Insertion

Removal

Summary

34

Binary Search Trees: Efficient Search

Goal: Report if a value exists in the tree

Target: 85 ° 85 > 807
if target > k:

Move right

else: 85 > 90?
Move Left
Complexity!?
35

BSTs: Search Implementation

pentS

left element right

BSTs: Search Implementation
search(Node(80), 85)
search(Node(90), 85)
search(Node(85), 85)

37

Today’s Lecture

-l o

Binary Search Trees
Search

Insertion

Removal

Summary

38

Binary Search Trees: Insertion

Insertion must maintain the properties of a BST!

Insert: 150 0

Binary Search Trees: Insertion

Insertion must maintain the properties of a BST!

Insert: 64 0

Complexity!? H H H H
O(log n) Q

Today’s Lecture

RN~

Binary Search Trees
Search

Insertion

Removal
Summary

4]

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: 150 Q

NS
X

—~
~

42

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: 70 Q
X (=) ()
)X

—~
~

43

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: 80

At each node with value k

- Left subtree contains only nodes
with value lesser than k
- Right subtree contains only nodes
with value greater than k 0 g 6 0
- Both subtrees are a binary
44

search tree

Binary Search Trees: Deletion
Replace with 90?

Delete: 80 x
= (= b (=) (=

c e° 0 45

Binary Search Trees: Deletion

Replace with 85?
Delete: 80

(= (=
) (v o (=) (2

c 00 G 46

Binary Search Trees: Deletion
Replace with 60?

Delete: 80 x

SWs 0‘ 000
001020 47

Binary Search Trees: Deletion

Replace with 64?
Delete: 80

() ()
OO y (=) (=
HoOOE © OC

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: 80
Replace deleted node with either: 6
1. Smallest value in right ° °
subtree
2. Largest value in left subtree
49

Binary Search Trees: Deletion

Complexity?

Case |: Removing a leaf node
O(log n)

Case 2: Removing a node with one child
O(log n)

Case 3: Removing a node with two children
O(log n)

50

What can go wrong?

Complexity?

Search
O(n)

Insertion:
O(n)

Deletion:
O(n)

Balanced Binary Trees

Balanced Binary Trees

* Difference of heights of left and right subtrees at
any node is at most 1

 Add an operation to BSTs to maintain balance:
* Rotation

Rotation

Move a child above its parent and relink subtrees
Maintains BST order

Rotations

® Assume heights of subtrees are equal
o h(T1)=h(T2)=h(T3) = h(T4)

e \What is the height of the entire tree?
o h(T3)+2

e What is the height of the left subtree
of a?
o h(T1)

e \What is the height of the right
subtree of a?
o h(T4) + 2

e Isthis tree balanced?

Rotations

Right subtree is too large!

How can we rotate to fix this?

What should we make the root?

56

Single Rotation (around z)

single rotation

CS151 - Lecture 22 - Spring '24 - 4/15/24 57

Rotations

Right rotation
Right rotation:

e Performed when left side is heavier
e |eft child becomes root
Left rotation:

e Performed when right side is heavier

* right child becomes root

CS151 - Lecture 22 - Spring '24 - 4/15/24

58

Left or Right rotation?

single rotation

CS151 - Lecture 22 - Spring '24 - 4/15/24 59

Example 2:

Should we do a left or right
rotation?

What will become the root?

Let’s draw what it will look like
after rotation

CS151 - Lecture 22 - Spring '24 - 4/15/24 60

Example 2: Rotate Right

single rotation

CS151 - Lecture 22 - Spring '24 - 4/15/24 61

RotateRight Algorithm

b 1. Root.left =
/f"“ﬂ\

*:::\R\//////' Pivct.right

Root Root
:/— 2 N

e Pivot '!,1" 2 . P i VO t . T i gh t —
/ /| root

o
=
Q
=

2

=

@ @ ®

Initial state Final state

Root is the initial parent and Pivot is the child to take the root's place.

RotatelLeft Algorithm

Final state

Pivot
L~
®
Root

& \o
® o

g

Root is the initial parent and Pivot is the child to take the root's place.

g

Initial state

Root

. Pivot

=\

® O

Root.right
Pivot.left

Pivot.left
root

63

Runtime Complexity

Runtime Complexity of rotation?
- O(1)

Constant time... we’re just updating links

Double Rotation

Sometimes a single rotation is not enough to restore balance

Double Rotation

Right child of a is too heavy.. because Right child of a is too heavy... because
Right subtree of b is too heavy.. Left subtree of c is too heavy
Single Left rotation on the root needed Is a single rotation enough?

Double Rotation

1. Rotate Right at c because
right subtree of root is too
heavy

2. Rotate Left at the root (a)

Double Rotation Example 2:

1. Rotate Left at a because
right subtree of root is too
heavy

2. Rotate right at the root (c)

Double Rotations

Right subtree is too heavy
because of left subtree of c
1. Rotate Right about ¢

2. Rotate Left about a

Left subtree is too heavy
because of right subtree of a
1. Rotate Left about a

2. Rotate Right about c

Double Rotation

When do we need a double rotation vs a single rotation?

Double rotation Single rotation Double rotation

Look for zig-zag pattern!

Double rotation

When do we need a double rotation?

Left subtree is too heavy on the right side
rotatelLeftRight

OR

Right subtree is too heavy on the left side
rotateRightLeft

Double Rotation Code

def rotateLeftRight(n)
n.left = rotatelLeft(n.left);
n = rotateRight(n);

def rotateRightLeft(n)
n.right = rotateRight(n.right);
n = rotatelLeft(n);

Examples - which way should | rotate?

77 Y 6] 42
/7\ 7N /N / N\
+ 9 k jo 4G 70 206 50
/
/\ 80 12 ‘0/ \22
8 %\ / \
100 78 1 25

rotateleft rotateRightLeft rotateRight rotatelLeftRight

73

Summary: Tree rotation

. Can rotate to left or right
. Used to restore balance in height
- Rotation maintains BST order

.- Runtime complexity of rotation?
- 0(1)

AVL Trees

AVL Trees

. “self balancing binary search tree”

. For every internal node, the heights of the two children differ by at
most 1

. does rotations upon insert/removal if necessary

AVL Height

. We keep track of the height of each node as a field for quick access

- The height of an AVL tree is logn

- Always balanced

Insertion

AVL Tree Example

* leaves are sentinels and have height O

Insert 54

CS151 - Lecture 22 - Spring '24 - 4/15/24 80

Insertion (54)

New node always has height 1
Parent may change height

CS151 - Lecture 22 - Spring '24 - 4/15/24 81

Which node do we “rebalance over”?

Y100 i

; 12

/ \ \ "‘io
Q 1200 3,0 Vg 37/ \

‘\ ; o .z < 95
300 2 OG GS "
I =7 . ’s
/ (2

lowest subtree with diff(heights) > 1

Exercise

* Create an AVL tree by inserting
the nodes in this order:

*M,N,O,L K, Q,PH,I A

AVL Animation

Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height) //double rotate
rotateLeftRight(n)
else:
rotateRight(n)

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate
rotateRightLeft(n)
else:
rotatelLeft(n)

Runtime Complexity:

Insertion (plus rotation)

a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

Deletion

Delete Example 1: 32

‘!' 1 2 ‘z,x 2

H
1 17

/ N\

3 0O s Ny
/ vy
| L
1] /v

\ / \

~ - ~

13 15

CS151 - Lecture 22 - Spring '24 - 4/15/24

88

Delete Example 1: 32

rotateleft

CS151 - Lecture 22 - Spring '24 - 4/15/24 89

38

Delete Example 2

90

Delete Example 2: 88

rotatelLeftRight

rotatelLeft

=)

/
50

62

/ \

44

/\
17 48

S4

N\

83

rotateRight

=)

So\‘ |
*L{ oL
/N 7/

17! 48 9t 88

91

Delete Example 3: 20

| O

rotateRight

=

Lo

R

8 216

KZI\ s r‘g

/\ 7/
21 1p6'9
/

rotateRight

_—

3 5 3[3
o N
i Zn e
AN
\q 'S 18

92

Delete Example 3: 20

Deletion can cause more than one rotation

. Worst case requires O(logn) rotations
- deleting from a deepest leaf node and rotating each subtree up to the root

Removal

Runtime Complexity?

a. search + find node to rebalance + rotate
b. O(logn) + O(logn) + O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?
-> Even though we may need to find multiple nodes to rebalance we
only traverse the height of the tree once

Performance of BSTs

Runtime complexity:

search?
BST:
O(n)
AVL:
O(logn)

Performance of BSTs

Runtime complexity:

insert?
BST:
O(n)
AVL:
O(logn)

Performance of BSTs

Runtime complexity:

remove?
BST:
O(n)
AVL:
O(logn)

