CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

Announcements

HW 7 and Lab9 (Hash Maps) due Sunday

Outline

Sorting review
Balanced BSTs

Merge sort

Example

6	8	4	1	7	2	5	3

Example

6	8	4	1	7	2	5	3

$$
\begin{array}{|l|l|l|l|}
\hline 6 & 8 & 4 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|}
\hline 7 & 2 & 5 & 3 \\
\hline
\end{array}
$$

Example

6	8	4	1	7	2	5	3

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 6 & 8 & 4 & 1 \\
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline
\end{array} \begin{array}{|l|l|l|l|l|l|}
\hline 6 & 7 & 2 & 5 & 3 \\
\hline
\end{array}
$$

Example

6	8	4	1	7	2	5	3

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline 6 & 8 & 4 & 1 & & \begin{array}{l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 \\
\hline
\end{array} & \\
\hline 6 & 8 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline
\end{array}
$$

Example

$$
\begin{array}{|l|l|l|ll|l|l|l|}
\hline 6 & 8 & 4 & 1 & \boxed{7} & 2 & \boxed{5} & 3 \\
\hline
\end{array}
$$

Example

6	8	4	1	7	2	5	3

Example

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 6 & 8 & 1 & 4 & \begin{array}{|l|l|l|l|}
\hline 2 & 7 & \begin{array}{|l|l|l|}
\hline 3 & 5 \\
\hline
\end{array} \\
\hline
\end{array} &
\end{array} \\
& \begin{array}{|l|l|l|llll|l|}
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3
\end{array}
\end{aligned}
$$

Example

$$
\begin{array}{|l|l|l|ll|l|l|l|}
\hline 6 & 8 & \boxed{1} & 4 & \begin{array}{|l|l|}
\hline 2 & 7 \\
\hline
\end{array} & \begin{array}{|l|l|l|l|l|}
\hline
\end{array} \\
\begin{array}{l|l|l|l|l|l|l|l|}
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline
\end{array}
\end{array}
$$

Example

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 8 & \begin{array}{|l|l|l|}
\hline 2 & 3 & 5 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|}
\hline 6 & 8 & 1 & 4 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & 7 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 3 & 5 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|llll|l|}
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 8 & \begin{array}{|l|l|l|}
\hline 2 & 3 & 5 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|}
\hline 6 & 8 & 1 & 4 \\
\cline { 3 - 5 } & & &
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & 7 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 3 & 5 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|llll|l|}
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Example

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 8 & \begin{array}{|l|l|l|}
\hline 2 & 3 & 5 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|}
\hline 6 & 8 & 1 & 4 \\
\cline { 2 - 4 } & & &
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & 7 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 3 & 5 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|llll|l|}
\hline 6 & 8 & 4 & 1 & 7 & 2 & 5 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Example - summary

Merge - how do we sort two sorted lists?

```
Algorithm merge(A, B)
    S = []
    while(!A.isEmpty() and !B.isEmpty())
        if A[0] < B[0]
            S.add(A.removeFirst())
        else
            S.add(B.removeFirst())
    while (!A.isEmpty())
            S.add(A.removeFirst())
    while (!B.isEmpty())
            S.add(B.removeFirst())
    return S
```


Merge Sort Implementation

Runtime of MergeSort

Runtime of merging two sorted two lists A, B where $|A|+|B|=n$: $\mathrm{O}(\mathrm{n})$

How many times do we merge two sorted lists? $\log n$ times

So total runtime is:
$\mathrm{O}(\mathrm{n} * \log (\mathrm{n}))$

Quicksort

Quicksort

- Divide and conquer
- Divide: select a pivot and create three sequences:
a. L : stores elements less than the pivot
b. E: stores elements equal to the pivot
c. G: stores elements greater than the pivot
- Conquer: recursively sort L and G
- Combine: $\mathrm{L}+\mathrm{E}+\mathrm{G}$ is a sorted list

Quick Sort

Sort $[2,6,5,3,8,7,1,0]$

1. choose a pivot
2. swap pivot to the end of the array
3. Find two items:
a. left which is larger than our pivot
b. right which is smaller than our pivot
4. swap left and right
5. repeat 3 and 4 until right $<$ left
6. swap left and pivot
7. Sort LE and R recursively

Quick Sort - Choosing a pivot

What if we chose our pivot to be 1 ?

We want a pivot that divides our list as evenly as possible.

Median-of-three: look at the first, middle, and last elems in the array, and pick the middle element.

Quicksort runtime complexity

Bad pivot:
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

Good pivot:
O(nlogn)

Summary of Sorting Algorithms

Algorithm	Time
selection-sort	
heap-sort	
merge-sort	
quick-sort	

Binary Search Tree Review

Binary Trees: Height

Height of a tree:

Maximum number of edges from a leaf node to the root

Height? 2
$\log _{2}(7) \approx 2$

Tree Review

Height? 3

 $\log _{2}(9) \approx 3$Height of a binary tree is roughly $\log (\mathrm{n})$ where n is number of nodes

Binary Search Trees

Binary Search Trees

Definition:
At each node with value \mathbf{k}

- Left subtree contains only nodes with value lesser than \mathbf{k}
- Right subtree contains only nodes with value greater than \mathbf{k}
- Both subtrees are a binary search tree

Exercise One: Binary Search Trees

Is this a binary search tree?

Exercise One: Binary Search Trees

Is this a binary search tree?

Exercise One: Binary Search Trees

Is this a binary search tree?

Today's Lecture

1. Binary Search Trees
2. Search
3. Insertion
4. Removal
5. Summary

Binary Search Trees: Efficient Search

Goal: Report if a value exists in the tree Target: 85
if target > k: Move right else:

Move Left

Complexity? O($\log n$)

BSTs: Search Implementation

BSTs: Search Implementation

search(Node(80), 85) search(Node(90), 85) search(Node(85), 85)

Today's Lecture

1. Binary Search Trees
2. Search
3. Insertion
4. Removal
5. Summary

Binary Search Trees: Insertion

Insertion must maintain the properties of a BST!

Insert: | 50

Binary Search Trees: Insertion

Insertion must maintain the properties of a BST!

Insert: 64

Complexity?
O(log n)

Today's Lecture

1. Binary Search Trees
2. Search
3. Insertion
4. Removal
5. Summary

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: I50

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: $7 \underline{70}$

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: 8 8

At each node with value \mathbf{k}

- Left subtree contains only nodes with value lesser than \mathbf{k}
- Right subtree contains only nodes with value greater than \mathbf{k}
- Both subtrees are a binary
 search tree

Binary Search Trees: Deletion

Replace with 90?

Delete: 80

Binary Search Trees: Deletion

Replace with 85?

Delete: 80

Binary Search Trees: Deletion

Replace with 60?

Delete: 80

Binary Search Trees: Deletion

Replace with 64?

Delete: 80

Binary Search Trees: Deletion

Deletion must maintain the properties of a BST!

Delete: 80

Replace deleted node with either:

1. Smallest value in right subtree
2. Largest value in left subtree

Binary Search Trees: Deletion

Complexity?

Case I: Removing a leaf node
O(logn)

Case 2: Removing a node with one child O(logn)

Case 3: Removing a node with two children
O(logn)

What can go wrong?

Balanced Binary Trees

Balanced Binary Trees

- Difference of heights of left and right subtrees at any node is at most 1
- Add an operation to BSTs to maintain balance:
- Rotation

Rotation

Move a child above its parent and relink subtrees
Maintains BST order

Rotations

- Assume heights of subtrees are equal
- $h(T 1)=h(T 2)=h(T 3)=h(T 4)$
- What is the height of the entire tree?
- $h(T 3)+2$
- What is the height of the left subtree of a?
- h(T1)
- What is the height of the right subtree of a?
- h(T4) +2
- Is this tree balanced?

Rotations

Right subtree is too large!

How can we rotate to fix this?

What should we make the root?

Single Rotation (around z)

Rotations

- right child becomes root

Right rotation:

- Performed when left side is heavier
- left child becomes root

Left rotation:

- Performed when right side is heavier

Left or Right rotation?

Example 2:

Should we do a left or right rotation?

What will become the root?

Let's draw what it will look like after rotation

Example 2: Rotate Right

RotateRight Algorithm

$$
\begin{aligned}
\text { 1. } & \text { Root.left }= \\
& \text { Pivot.right }
\end{aligned}
$$

2. Pivot.right $=$ root

RotateLeft Algorithm

Runtime Complexity

Runtime Complexity of rotation?

- O(1)

Constant time... we're just updating links

Double Rotation

Sometimes a single rotation is not enough to restore balance

Double Rotation

Right child of a is too heavy.. because Right subtree of b is too heavy.. Single Left rotation on the root needed

Right child of a is too heavy... because Left subtree of c is too heavy Is a single rotation enough?

Double Rotation

1. Rotate Right at c because right subtree of root is too heavy
2. Rotate Left at the root (a)

Double Rotation Example 2:

1. Rotate Left at a because right subtree of root is too heavy
2. Rotate right at the root (c)

Double Rotations

Right subtree is too heavy because of left subtree of c

1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy because of right subtree of a 1. Rotate Left about a
2. Rotate Right about c

Double Rotation

When do we need a double rotation vs a single rotation?

Double rotation

Single rotation

Double rotation

Look for zig-zag pattern!

Double rotation

When do we need a double rotation?

Left subtree is too heavy on the right side rotateLeftRight

OR

Right subtree is too heavy on the left side rotateRightLeft

Double Rotation Code

def rotateLeftRight(n)
n.left = rotateLeft(n.left);
$\mathrm{n}=$ rotateRight(n);
def rotateRightLeft(n)
n.right = rotateRight(n.right);
$\mathrm{n}=$ rotateLeft(n);

Examples - which way should I rotate?

rotateLeft

rotateRightLeft

rotateRight

rotateLeftRight

Summary: Tree rotation

- Can rotate to left or right
- Used to restore balance in height
- Rotation maintains BST order
- Runtime complexity of rotation?
- O(1)

AVL Trees

AVL Trees

- "self balancing binary search tree"
- For every internal node, the heights of the two children differ by at most 1
- does rotations upon insert/removal if necessary

AVL Height

- We keep track of the height of each node as a field for quick access
- The height of an AVL tree is logn
- Always balanced

Insertion

AVL Tree Example

- leaves are sentinels and have height 0

Insert 54

Insertion (54)

New node always has height 1 Parent may change height

Which node do we "rebalance over"?

lowest subtree with diff(heights) > 1

Exercise

- Create an AVL tree by inserting the nodes in this order:
- M, N, O, L, K, Q, P, H, I, A

AVL Animation

Rebalance Algorithm

If left.height > right.height +1 : if (left.right.height > left.left.height) //double rotate rotateLeftRight(n) else: rotateRight(n)
else if right.height > left.height +1 :
if (right.left.height > right.right.height) //double rotate rotateRightLeft(n)
else:
rotateLeft(n)

Runtime Complexity:

Insertion (plus rotation)
a. search + find node to rebalance + rotate
b. $O(\log n)+O(\log n) \quad+O(1)=\mathbf{O}(\log n)$

Deletion

Delete Example 1: 32

Delete Example 1: 32

rotateLeft

Delete Example 2: 88

Delete Example 2: 88

rotateLeftRight

Delete Example 3: 20

Delete Example 3: 20

- Deletion can cause more than one rotation
- Worst case requires O(logn) rotations
- deleting from a deepest leaf node and rotating each subtree up to the root

Removal

Runtime Complexity?
a. search + find node to rebalance + rotate
b. $\mathrm{O}(\log n)+\mathrm{O}(\log n) \quad+\mathrm{O}(1)=\mathbf{O}(\log n)$

Still O(logn) even though we may need multiple rotations?
Why?
-> Even though we may need to find multiple nodes to rebalance we only traverse the height of the tree once

Performance of BSTs

Runtime complexity:

search?
BST:
$\mathrm{O}(\mathrm{n})$
AVL:
O(logn)

Performance of BSTs

Runtime complexity:

insert?
BST:
$\mathrm{O}(\mathrm{n})$
AVL:
O(logn)

Performance of BSTs

Runtime complexity:
remove?
BST:
$\mathrm{O}(\mathrm{n})$
AVL:
O(logn)

