
CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees
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Announcements

HW 7 and Lab9 (Hash Maps) due Sunday  
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Outline

Sorting review

Balanced BSTs 
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Merge sort 
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Example
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Example
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6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

1 2 3 4 5 6 7 8



Example - summary
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Merge - how do we sort two sorted lists?
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Algorithm merge(A, B)
  S = []

  while(!A.isEmpty() and !B.isEmpty())
if A[0] < B[0]
    S.add(A.removeFirst())
else
    S.add(B.removeFirst())

while (!A.isEmpty())
S.add(A.removeFirst())

while (!B.isEmpty())   
    S.add(B.removeFirst())
return S

runtime complexity?
O(n) 

where n is A.length + 
B.length 



Merge Sort Implementation 
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Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| = n :

O(n)

How many times do we merge two sorted lists?

log n times

So total runtime is:

O(n * log(n))
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Quicksort
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Quicksort

• Divide and conquer 
• Divide: select a pivot and create three sequences:

a. L: stores elements less than the pivot
b. E: stores elements equal to the pivot
c. G: stores elements greater than the pivot

• Conquer: recursively sort L and G
• Combine: L + E + G is a sorted list 
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Quick Sort 

Sort  [2, 6, 5, 3, 8, 7, 1, 0]

1. choose a pivot
2. swap pivot to the end of the array
3. Find two items:

a. left which is larger than our pivot
b. right which is smaller than our pivot 

4. swap left and right 
5. repeat 3 and 4 until right < left 
6. swap left and pivot 
7. Sort L E and R recursively
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Quick Sort - Choosing a pivot

What if we chose our pivot to be 1?

We want a pivot that divides our list as evenly as possible. 

Median-of-three: look at the first, middle, and last elems in the array, 
and pick the middle element. 
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Quicksort runtime complexity

Bad pivot:

O(n^2)

Good pivot:

O(nlogn)
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Summary of Sorting Algorithms
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Algorithm Time

selection-sort

heap-sort

merge-sort

quick-sort



Binary Search Tree Review
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Height of a tree:
Maximum number of edges 
from a leaf node to the root
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Binary Trees: Height 

Height? 2

log2 (7) ≈ 2
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Tree Review

Height? 3

log2 (9) ≈ 3

Height of a binary tree is 
roughly log(n) where n is 
number of nodes



Binary Search Trees
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Definition:
At each node with value k

- Left subtree contains only nodes 
with value lesser than k

- Right subtree contains only nodes 
with value greater than k

- Both subtrees are a binary 
search tree
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Binary Search Trees



Is this a binary search tree?
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Exercise One: Binary Search Trees



Is this a binary search tree?
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Exercise One: Binary Search Trees
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Exercise One: Binary Search Trees

Is this a binary search tree?
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Today’s Lecture

1. Binary Search Trees
2. Search 
3. Insertion
4. Removal 
5. Summary



Goal: Report if a value exists in the tree
Target: 85
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Binary Search Trees: Efficient Search

if target > k:
Move right

else: 
Move Left

85 > 80? 

85 > 90? 

Complexity?
 O(log n)



BSTs: Search Implementation
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BSTs: Search Implementation
search(Node(80), 85)

search(Node(90), 85)
search(Node(85), 85)
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Today’s Lecture

1. Binary Search Trees
2. Search 
3. Insertion
4. Removal
5. Summary 



Insertion must maintain the properties of a BST!
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Binary Search Trees: Insertion

Insert: 150



Insertion must maintain the properties of a BST!
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Binary Search Trees: Insertion

Insert: 64

Complexity? 
O(log n)
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Today’s Lecture

1. Binary Search Trees
2. Search 
3. Insertion
4. Removal 
5. Summary



Deletion must maintain the properties of a BST!
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Binary Search Trees: Deletion

Delete: 150



Deletion must maintain the properties of a BST!
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Binary Search Trees: Deletion

Delete: 70



Deletion must maintain the properties of a BST!
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Binary Search Trees: Deletion

Delete: 80
At each node with value k

- Left subtree contains only nodes 
with value lesser than k

- Right subtree contains only nodes 
with value greater than k

- Both subtrees are a binary 
search tree



Replace with 90?
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Binary Search Trees: Deletion

Delete: 80
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Binary Search Trees: Deletion

Delete: 80

Replace with 85?
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Binary Search Trees: Deletion

Delete: 80

Replace with 60?
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Binary Search Trees: Deletion

Delete: 80

Replace with 64?



Deletion must maintain the properties of a BST!
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Binary Search Trees: Deletion

Delete: 80

Replace deleted node with either:

1. Smallest value in right 
subtree

2. Largest value in left subtree
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Binary Search Trees: Deletion

Case 1: Removing a leaf node
O(log n) 

Case 2: Removing a node with one child
O(log n)

Case 3: Removing a node with two children
O(log n)

Complexity? 



What can go wrong?
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Complexity? 

Search
O(n) 

Insertion:
O(n)

Deletion:
O(n)



Balanced Binary Trees
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Balanced Binary Trees

• Difference of heights of left and right subtrees at 
any node is at most 1

• Add an operation to BSTs to maintain balance:
• Rotation 
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Rotation

Move a child above its parent and relink subtrees

Maintains BST order 
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Rotations
● Assume heights of subtrees are equal

○ h(T1) = h(T2) = h(T3) = h(T4)
● What is the height of the entire tree?

○ h(T3) + 2 
● What is the height of the left subtree 

of a? 
○ h(T1) 

● What is the height of the right 
subtree of a? 
○ h(T4) + 2

● Is this tree balanced?



Rotations

Right subtree is too large!

How can we rotate to fix this? 

What should we make the root?
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Rotations

Right rotation:

• Performed when left side is heavier

• left child becomes root 

Left rotation:

• Performed when right side is heavier

• right child becomes root 
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Left or Right rotation?
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Example 2:

Should we do a left or right 
rotation?

What will become the root?

Let’s draw what it will look like 
after rotation 
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Example 2: Rotate Right



RotateRight Algorithm

1. Root.left =  
Pivot.right

2. Pivot.right = 
root
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RotateLeft Algorithm
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1. Root.right =  
Pivot.left

2. Pivot.left = 
root



Runtime Complexity

Runtime Complexity of rotation?

- O(1) 

Constant time... we’re just updating links
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Double Rotation
Sometimes a single rotation is not enough to restore balance 
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Double Rotation
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Right child of a is too heavy.. because
Right subtree of b is too heavy.. 
Single Left rotation on the root needed

Right child of a is too heavy... because
Left subtree of c is too heavy 
Is a single rotation enough?



Double Rotation 
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1. Rotate Right at c because 
right subtree of root is too 
heavy 

2. Rotate Left at the root (a) 



Double Rotation Example 2:
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1. Rotate Left at a because 
right subtree of root is too 
heavy 

2. Rotate right at the root (c) 
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Double Rotations

Right subtree is too heavy 
because of left subtree of c
1. Rotate Right about c
2. Rotate Left about a

Left subtree is too heavy 
because of right subtree of a
1. Rotate Left about a
2. Rotate Right about c



Double Rotation 

When do we need a double rotation vs a single rotation? 
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Double rotation Single rotation Double rotation

Look for zig-zag pattern!



Double rotation
When do we need a double rotation?

Left subtree is too heavy on the right side

rotateLeftRight 

OR

Right subtree is too heavy on the left side

rotateRightLeft
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Double Rotation Code 

def rotateLeftRight(n)

n.left = rotateLeft(n.left);

n = rotateRight(n);

def rotateRightLeft(n)

n.right = rotateRight(n.right);

n = rotateLeft(n);
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Examples - which way should I rotate?
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rotateLeft rotateRightLeft rotateRight rotateLeftRight



Summary: Tree rotation

• Can rotate to left or right
• Used to restore balance in height
• Rotation maintains BST order
• Runtime complexity of rotation?

• O(1)
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AVL Trees
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AVL Trees

• “self balancing binary search tree”

• For every internal node, the heights of the two children differ by at 
most 1

• does rotations upon insert/removal if necessary
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AVL Height

• We keep track of the height of each node as a field for quick access

• The height of an AVL tree is logn 
• Always balanced
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Insertion
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AVL Tree Example

• leaves are sentinels and have height 0 
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Insert 54
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Insertion (54)

New node always has height 1

Parent may change height
81CS151 - Lecture 22 - Spring '24 - 4/15/24



Which node do we “rebalance over”?

lowest subtree with diff(heights) > 1
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Exercise

•Create an AVL tree by inserting 
the nodes in this order:
• M, N, O, L, K, Q, P, H, I, A
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AVL Animation
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Rebalance Algorithm

If left.height > right.height + 1:
if (left.right.height > left.left.height)  //double rotate

rotateLeftRight(n)
else:

rotateRight(n) 

else if right.height > left.height + 1:
if (right.left.height > right.right.height) //double rotate

rotateRightLeft(n)
else:

rotateLeft(n) 
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Runtime Complexity:

Insertion (plus rotation)
a. search   + find node to rebalance +  rotate 
b. O(logn) +           O(logn)        +  O(1) = O(logn)
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Deletion
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Delete Example 1: 32
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Delete Example 1: 32
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rotateLeft



Delete Example 2: 88
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Delete Example 2: 88
rotateLeftRight
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rotateLeft rotateRight



Delete Example 3: 20
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rotateRight
rotateRight



Delete Example 3: 20

• Deletion can cause more than one rotation 

• Worst case requires O(logn) rotations 
• deleting from a deepest leaf node and rotating each subtree up to the root
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Removal

Runtime Complexity? 
a. search   + find node to rebalance +  rotate
b. O(logn) +           O(logn)        +  O(1) = O(logn)

Still O(logn) even though we may need multiple rotations?

Why?

-> Even though we may need to find multiple nodes to rebalance we 
only traverse the height of the  tree once 
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Performance of BSTs
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Runtime complexity:

search?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

insert?
BST:

O(n)
AVL:

O(logn)



Performance of BSTs
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Runtime complexity:

remove?
BST:

O(n)
AVL:

O(logn)


