CS151 Intro to Data Structures

Merge Sort
Quick Sort

CS151 - Lecture 21 - Spring '24 - 4/10/24 1

Announcements

HWY7 released tonight due April 21st
Lab9 due April 21st

CS151 - Lecture 21 - Spring '24 - 4/10/24 2

Outline

Hash Maps
Homework Discussion

MergeSort
QuickSort

Handling Collisions

Handling Collisions

A hash function does not guarantee one-to-one mapping — no hash
function does

One approach chaining:

When more than one key hash to the same index, we have a bucket
Each index holds a collection of entries

Collision Handling

Collisions occur when elements with different keys are mapped to
the same cell

Separate Chaining: let each cell in the table point to a linked list
of entries that map there

Simple, but requires additional memory besides the table

Let’s implement a ChainHashMap

What data structure should we use for the buckets?
- LinkedList!

Collision Handling Approach #2

Open Addressing and Probing

When a collision occurs, find an empty slot nearby to store
the colliding element

Open Addressing and Probing

« Example: h(x) = x%13
* insert 18(5), 41(2), 22(9), 44(5), 59(7), , 31(5),

Keep “probing” HEEEEEEEEEEEN

(h(k)+1)%n 0O 1 2 3 4 5 6 7 8 9 10 11 12
(h(k)+2)%n

XXX ﬂ
(b6

until you find an 0 I 2 3 4 5 6 7 8 9 10 1l I2
empty slot!

CS151 - Lecture 20 - Spring '24 8/3/24

ProbeHashMap

Let’s implement a ProbeHashMap

Open Addressing and Probing

Linear Probing (what we just implemented):

. Keep “probing” until you find an empty slot
(h(k)+1) % n
(h(k)+2) % n

(h(k)+i) % n

. Colliding items cluster together — future collisions to cause a longer
sequence of probes

Open Addressing and Probing

Quadratic Probing:

. Keep “probing” until you find an empty slot
(h(k)+f(1)) % n
(h(k)+f(2)) % n
(h(k)+f(i)) % n

where f(i) = i

Linear Probing vs Quadratic Probing

48
49

50
51
52
53
54
55

56
57
58

Linear Probing

<——Initial

Probe

<— Initial
Probe

Quadratic Probing

Quadratic probing still
creates large clusters!

Unlike linear probing, they
are clustered away from
the initial hash position

If the primary hash index

is X, probes go to x+1, x+4,
x+9, x+16, x+25 and so on,
this results in Secondary
Clustering .

Approach #3: Double Hashing

Let’s try to avoid clustering.
To probe, let’s use a second hash function
- Keep “probing” until you find an empty slot
(h(k)+f(1)) % n
(h(k)+f(2)) % n
(h(k)+f(i)) % n

Where f(i) =i * h’(k)

Approach #3: Double Hashing

Keep “probing” until you find an empty slot
(h(k)+f(1)) % n
(h(k)+f(2)) % n
(h(k)+f(i)) % n

Where f(i) =i * h’(k)

A common choice for h’(k) =q - (k% q)
where q is prime and < n

k h(k) wk Probes
18 5 3 o)
Example 4 2 1 |2
22 9 6 9
44 5 5 5 10
59 / 4 /
32 6 3 6
31 5 4 5 9 0
/3 8 4 8
* Insert 18, 41, 22, 44, 59, 32,
31, 73
probe: o 1 2 3 4 5 6 7 8 9 10 11 12
(h(k) + f(k)) % n @

h(k) =k % 13
f(k) =i*h(k)
h(k) =7-k%7 0o 1 2 3 4 5 6 7 8 9 10 11 12

CS151 - Lecture 20 - Spring '24 18/3/24

Performance Analysis

ChainHashMap ChainHashMap ProbeHashMap ProbeHashMap
Best Case Worst Case Best Case Worst Case
get
put
remove

Which is better in practice?

Open Addressing vs Chaining

* Probing is significantly faster in practice

* locality of references — much faster to access a series of elements in
an array than to follow the same number of pointers in a linked list

Performance Analysis

ArrayMap

HashMap with good
hashing and good probing

get

put

remove

19

Performance of Hashtable

array

linked list

BST
(balanced)

HashTable

search

insert

remove

Load Factor

HashMaps have an underlying array... what if it gets full?
For ChainHashMap collisions increase
For ProbeHashMap we need to resize!

Load Factor = # of elements stored / capacity

- A common strategy is to resize the hash map when the load factor

exceeds a predefined threshold (often 0.75)
- tradeoff between memory and runtime

Outline

Homework Discussion
MergeSort

Homework 7

- NYPD “Stop Question and Frisk” dataset
- How to work with large data

From Wikipedia, the free encyclopedia

A Terry stop in the United States allows the police to briefly detain a person
based on reasonable suspicion of involvement in criminal activity.!'112]
Reasonable suspicion is a lower standard than probable cause which is
needed for arrest. When police stop and search a pedestrian, this is
commonly known as a stop and frisk. When police stop an automobile, this
is known as a traffic stop. If the police stop a motor vehicle on minor
infringements in order to investigate other suspected criminal activity, this is

known as a pretextual stop. Additional rules apply to stops that occur on a
bus.!

23

Homework 7

- How many times was the same person stopped for questioning?

MergeSort

What sorting algorithms have we seen thus far?

1. Selection sort

a. How does it work?

b. Runtime complexity
2. Heap sort

a. How does it work?

b. Runtime complexity?

Divide and Conquer algorithm

=

Divide: recursively break down the problem into sub-problems
Conquer: recursively solve the sub-problems

3. Combine: combine the solutions to the sub-problems until they
are a solution to the entire problem

N

Binary search is a divide and conquer algorithm

Usually involves recursion

Merge Sort

1. Divide: Divide the unsorted list into lists with only one element
2. Congquer: merge them back together in a sorted manner

3. Combine: merge the sorted sequences

Merge Sort

https://youtu.be/4VgmGXwpLqgc?si=WpYuXYLtJOuhvd77&t=24

Merge Sort

Sort a sequence of numbers 4, |A| = n
Base: |[A| = 1, then it’s already sorted
General

e divide: split A into two halves, each of size = (FJ and H)
2 ‘[2 2

e conquer: sort each half (by calling mergeSort recursively)
* combine: merge the two sorted halves into a single sorted list

CS151 - Lecture 21 - Spring '24 - 4/10/24 30

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

31

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

32

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

33

Example

6|8 2153
6|84 72|53
6|8 4 2 513

6 8| |4 2 5 3

CS151 - Lecture 21 - Spring '24 - 4/10/24

34

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

35

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

36

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

37

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

38

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

39

Example

CS151 - Lecture 21 - Spring '24 - 4/10/24

40

Example

1| 2 6|78
1146 23|57
6|8 1 7/ 315
6 8| |4 2 5 3

CS151 - Lecture 21 - Spring '24 - 4/10/24

41

Example - summary

Input Output
6lslal1|7[2]5]3 ! 1[2[3[4]5]6]7]8
- ~ «— split | i “ <« Imerge
68|41 i |29 |3 114168 8| a|F
< . =—split A ™ S~ N\ < merge
618 411 7| 2 5|3 6|8 1|4 2|7 3 | o
/N 4 N 4 N 4 N—split /N A X/ N X< merge
O | |8 | |4l L] [2]]3] |8 = = 6| 18] |4 |LIIT]|12]]|9] |3

CS151 - Lecture 21 - Spring '24 - 4/10/24

42

Merge - how do we sort two sorted lists?

Algorithm merge (A, B)
S = []

while (!A.1sEmpty () and !B.isEmpty())
if A[O0O] < B[O]
S.add (A.removeFirst ())
else
S.add (B.removeFirst ())

while (!'A.isEmpty())

S.add (A.removeFirst ())
while (!B.isEmpty())

S.add (B.removeFirst ())
return S

runtime complexity?
O(n)

where n is A.length +
B.length

Merge Sort Implementation

Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| =n:
O(n)

How many times do we merge two sorted lists?

log n times

So total runtime is:
O(n * log(n))

Quicksort

Quicksort

Divide and conquer

. Divide: select a pivot and create three sequences:
a. L:stores elements less than the pivot
b. E:stores elements equal to the pivot
c. G:stores elements greater than the pivot

- Conquer: recursively sort L and G

. Combine: L+ E + Gis a sorted list

Quick Sort

Sort [2,6,5,3,8,7,1,0]

1.
2.
3.

N o ok

choose a pivot

swap pivot to the end of the array
Find two items:

a. left which is larger than our pivot
b. right which is smaller than our pivot

swap left and right

repeat 3 and 4 until right < left
swap left and pivot

Sort L E and R recursively

Quick Sort - Choosing a pivot

What if we chose our pivot to be 1°?
We want a pivot that divides our list as evenly as possible.

Median-of-three: look at the first, middle, and last elems in the array,
and pick the middle element.

Quicksort runtime complexity

Bad pivot:
O(n”2)

Good pivot:
O(nlogn)

Summary of Sorting Algorithms

Algorithm Time

selection-sort

heap-sort

merge-sort

quick-sort

