
CS151 Intro to Data Structures
Merge Sort 
Quick Sort
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Announcements

HW7 released tonight due April 21st 
Lab9 due April 21st 
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Outline

Hash Maps
Homework Discussion

MergeSort
QuickSort
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Handling Collisions
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Handling Collisions

A hash function does not guarantee one-to-one mapping – no hash 
function does

One approach chaining: 

When more than one key hash to the same index, we have a bucket

Each index holds a collection of entries
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Collision Handling

Collisions occur when elements with different keys are mapped to 
the same cell

Separate Chaining: let each cell in the table point to a linked list 
of entries that map there

Simple, but requires additional memory besides the table
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Let’s implement a ChainHashMap

7

What data structure should we use for the buckets? 
- LinkedList!



Collision Handling Approach #2

Open Addressing and Probing

When a collision occurs, find an empty slot nearby to store 
the colliding element 
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Open Addressing and Probing
•  
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0 1 2 3 4 5 6 7 8 9 10 11 12

  41   18 44 59 32 22 31 73  

0 1 2 3 4 5 6 7 8 9 10 11 12

4/3/24

Keep “probing”  
(h(k)+1)%n 
(h(k)+2)%n 
....
(h(k)+i)%n 
until you find an 
empty slot!



ProbeHashMap

Let’s implement a ProbeHashMap 
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Open Addressing and Probing

Linear Probing (what we just implemented): 

• Keep “probing” until you find an empty slot 
 (h(k)+1) % n 
      (h(k)+2) % n 
      ....
      (h(k)+i) % n 

• Colliding items cluster together – future collisions to cause a longer 
sequence of probes
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Open Addressing and Probing

Quadratic Probing: 

• Keep “probing” until you find an empty slot 
 (h(k)+f(1)) % n 
      (h(k)+f(2)) % n 
      ....
      (h(k)+f(i)) % n 

where f(i) = i2
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Linear Probing vs Quadratic Probing 
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Linear Probing Quadratic Probing

● Quadratic probing still 
creates large clusters!

● Unlike linear probing, they 
are clustered away from 
the initial hash position

●  If the primary hash index 
is x, probes go to x+1, x+4, 
x+9, x+16, x+25 and so on, 
this results in Secondary 
Clustering



Approach #3: Double Hashing
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Let’s try to avoid clustering. 

To probe, let’s use a second hash function

• Keep “probing” until you find an empty slot 
 (h(k)+f(1)) % n 
      (h(k)+f(2)) % n 
      ....
      (h(k)+f(i)) % n 

Where f(i) = i * h’(k)  



Approach #3: Double Hashing
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Keep “probing” until you find an empty slot 
 (h(k)+f(1)) % n 
      (h(k)+f(2)) % n 
      ....
      (h(k)+f(i)) % n 

Where f(i) = i * h’(k)  

A common choice for h’(k) = q - (k % q) 
where q is prime and < n



Example

•  
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0 1 2 3 4 5 6 7 8 9 10 11 12

31  41   18 32 59 73 22 44  

0 1 2 3 4 5 6 7 8 9 10 11 12

h’(k)

h’(k)

probe:
(h(k) + f(k)) % n 

h(k)   = k % 13
f (k)   = i * h’(k) 
h’(k)  = 7 - k % 7 



Performance Analysis 
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ChainHashMap
Best Case

  ChainHashMap 
    Worst Case

  ProbeHashMap 
      Best Case

  ProbeHashMap
     Worst Case

get           

put

remove

Which is better in practice? 



Open Addressing vs Chaining

• Probing is significantly faster in practice 

• locality of references – much faster to access a series of elements in 
an array than to follow the same number of pointers in a linked list
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Performance Analysis 
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ArrayMap HashMap with good 
hashing and good probing  

get          

put

remove



Performance of Hashtable
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   array linked list BST
(balanced)

HashTable

search

insert

remove
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Load Factor 

• HashMaps have an underlying array... what if it gets full?
• For ChainHashMap collisions increase 
• For ProbeHashMap we need to resize!

• Load Factor = # of elements stored / capacity 

• A common strategy is to resize the hash map when the load factor 
exceeds a predefined threshold (often 0.75)

• tradeoff between memory and runtime 
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Outline

Homework Discussion

MergeSort
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Homework 7

- NYPD “Stop Question and Frisk” dataset 
- How to work with large data
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Homework 7

• How many times was the same person stopped for questioning?
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MergeSort
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What sorting algorithms have we seen thus far?

1. Selection sort 
a. How does it work?
b. Runtime complexity

2. Heap sort
a. How does it work?
b. Runtime complexity? 
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Divide and Conquer algorithm 

1. Divide: recursively break down the problem into sub-problems
2. Conquer: recursively solve the sub-problems
3. Combine: combine the solutions to the sub-problems until they 

are a solution to the entire problem 

Binary search is a divide and conquer algorithm 

Usually involves recursion
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Merge Sort 

1. Divide: Divide the unsorted list into lists with only one element 

2. Conquer: merge them back together in a sorted manner

3. Combine: merge the sorted sequences 
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Merge Sort 

https://youtu.be/4VqmGXwpLqc?si=WpYuXYLtJOuhvd77&t=24
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Merge Sort

•  
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Example
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6 8 4 1 7 2 5 3



Example
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6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3



Example
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6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3



Example
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6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3



Example
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6 8 4 1 7 2 5 3



Example
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6 8 4 1 7 2 5 3



Example
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6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3



Example
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6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3



Example
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6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7



Example
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6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7



Example
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6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

1 2 3 4 5 6 7 8



Example - summary
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Merge - how do we sort two sorted lists?
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Algorithm merge(A, B)
  S = []

  while(!A.isEmpty() and !B.isEmpty())
if A[0] < B[0]
    S.add(A.removeFirst())
else
    S.add(B.removeFirst())

while (!A.isEmpty())
S.add(A.removeFirst())

while (!B.isEmpty())   
    S.add(B.removeFirst())
return S

runtime complexity?
O(n) 

where n is A.length + 
B.length 



Merge Sort Implementation 
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Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| = n :

O(n)

How many times do we merge two sorted lists?

log n times

So total runtime is:

O(n * log(n))
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Quicksort
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Quicksort

• Divide and conquer 
• Divide: select a pivot and create three sequences:

a. L: stores elements less than the pivot
b. E: stores elements equal to the pivot
c. G: stores elements greater than the pivot

• Conquer: recursively sort L and G
• Combine: L + E + G is a sorted list 
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Quick Sort 

Sort  [2, 6, 5, 3, 8, 7, 1, 0]

1. choose a pivot
2. swap pivot to the end of the array
3. Find two items:

a. left which is larger than our pivot
b. right which is smaller than our pivot 

4. swap left and right 
5. repeat 3 and 4 until right < left 
6. swap left and pivot 
7. Sort L E and R recursively
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Quick Sort - Choosing a pivot

What if we chose our pivot to be 1?

We want a pivot that divides our list as evenly as possible. 

Median-of-three: look at the first, middle, and last elems in the array, 
and pick the middle element. 
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Quicksort runtime complexity

Bad pivot:

O(n^2)

Good pivot:

O(nlogn)
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Summary of Sorting Algorithms
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Algorithm Time

selection-sort

heap-sort

merge-sort

quick-sort


