
CS151 Intro to Data Structures
Merge Sort
Quick Sort

1CS151 - Lecture 21 - Spring '24 - 4/10/24

Announcements

HW7 released tonight due April 21st
Lab9 due April 21st

2CS151 - Lecture 21 - Spring '24 - 4/10/24

Outline

Hash Maps
Homework Discussion

MergeSort
QuickSort

CS151 - Lecture 21 - Spring '24 - 4/10/24 3

Handling Collisions

4

Handling Collisions

A hash function does not guarantee one-to-one mapping – no hash
function does

One approach chaining:

When more than one key hash to the same index, we have a bucket

Each index holds a collection of entries

5CS151 - Lecture 20 - Spring '24 4/3/24

Collision Handling

Collisions occur when elements with different keys are mapped to
the same cell

Separate Chaining: let each cell in the table point to a linked list
of entries that map there

Simple, but requires additional memory besides the table

6CS151 - Lecture 20 - Spring '24 4/3/24

Let’s implement a ChainHashMap

7

What data structure should we use for the buckets?
- LinkedList!

Collision Handling Approach #2

Open Addressing and Probing

When a collision occurs, find an empty slot nearby to store
the colliding element

8

Open Addressing and Probing
•

9CS151 - Lecture 20 - Spring '24

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

4/3/24

Keep “probing”
(h(k)+1)%n
(h(k)+2)%n
....
(h(k)+i)%n
until you find an
empty slot!

ProbeHashMap

Let’s implement a ProbeHashMap

10

Open Addressing and Probing

Linear Probing (what we just implemented):

• Keep “probing” until you find an empty slot
 (h(k)+1) % n
 (h(k)+2) % n

 (h(k)+i) % n

• Colliding items cluster together – future collisions to cause a longer
sequence of probes

11

Open Addressing and Probing

Quadratic Probing:

• Keep “probing” until you find an empty slot
 (h(k)+f(1)) % n
 (h(k)+f(2)) % n

 (h(k)+f(i)) % n

where f(i) = i2

12

Linear Probing vs Quadratic Probing

13

Linear Probing Quadratic Probing

● Quadratic probing still
creates large clusters!

● Unlike linear probing, they
are clustered away from
the initial hash position

● If the primary hash index
is x, probes go to x+1, x+4,
x+9, x+16, x+25 and so on,
this results in Secondary
Clustering

Approach #3: Double Hashing

14CS151 - Lecture 20 - Spring '24 4/3/24

Let’s try to avoid clustering.

To probe, let’s use a second hash function

• Keep “probing” until you find an empty slot
 (h(k)+f(1)) % n
 (h(k)+f(2)) % n

 (h(k)+f(i)) % n

Where f(i) = i * h’(k)

Approach #3: Double Hashing

15CS151 - Lecture 20 - Spring '24 4/3/24

Keep “probing” until you find an empty slot
 (h(k)+f(1)) % n
 (h(k)+f(2)) % n

 (h(k)+f(i)) % n

Where f(i) = i * h’(k)

A common choice for h’(k) = q - (k % q)
where q is prime and < n

Example

•

16CS151 - Lecture 20 - Spring '24 4/3/24

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44

0 1 2 3 4 5 6 7 8 9 10 11 12

h’(k)

h’(k)

probe:
(h(k) + f(k)) % n

h(k) = k % 13
f (k) = i * h’(k)
h’(k) = 7 - k % 7

Performance Analysis

17

ChainHashMap
Best Case

 ChainHashMap
 Worst Case

 ProbeHashMap
 Best Case

 ProbeHashMap
 Worst Case

get

put

remove

Which is better in practice?

Open Addressing vs Chaining

• Probing is significantly faster in practice

• locality of references – much faster to access a series of elements in
an array than to follow the same number of pointers in a linked list

18CS151 - Lecture 20 - Spring '24 4/3/24

Performance Analysis

19

ArrayMap HashMap with good
hashing and good probing

get

put

remove

Performance of Hashtable

20CS151 - Lecture 20 - Spring '24

 array linked list BST
(balanced)

HashTable

search

insert

remove

4/3/24

Load Factor

• HashMaps have an underlying array... what if it gets full?
• For ChainHashMap collisions increase
• For ProbeHashMap we need to resize!

• Load Factor = # of elements stored / capacity

• A common strategy is to resize the hash map when the load factor
exceeds a predefined threshold (often 0.75)

• tradeoff between memory and runtime

21

Outline

Homework Discussion

MergeSort

CS151 - Lecture 21 - Spring '24 - 4/10/24 22

Homework 7

- NYPD “Stop Question and Frisk” dataset
- How to work with large data

23

Homework 7

• How many times was the same person stopped for questioning?

24

MergeSort

25

What sorting algorithms have we seen thus far?

1. Selection sort
a. How does it work?
b. Runtime complexity

2. Heap sort
a. How does it work?
b. Runtime complexity?

26

Divide and Conquer algorithm

1. Divide: recursively break down the problem into sub-problems
2. Conquer: recursively solve the sub-problems
3. Combine: combine the solutions to the sub-problems until they

are a solution to the entire problem

Binary search is a divide and conquer algorithm

Usually involves recursion

27

Merge Sort

1. Divide: Divide the unsorted list into lists with only one element

2. Conquer: merge them back together in a sorted manner

3. Combine: merge the sorted sequences

28

Merge Sort

https://youtu.be/4VqmGXwpLqc?si=WpYuXYLtJOuhvd77&t=24

29

Merge Sort

•

30CS151 - Lecture 21 - Spring '24 - 4/10/24

Example

31CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

Example

32CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

Example

33CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

Example

34CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

Example

35CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

Example

36CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 4 1 7 2 5 3

Example

37CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

Example

38CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

Example

39CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

Example

40CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

Example

41CS151 - Lecture 21 - Spring '24 - 4/10/24

6 8 1 4 2 7 3 5

6 8 4 1 7 2 5 3

1 4 6 8 2 3 5 7

1 2 3 4 5 6 7 8

Example - summary

42CS151 - Lecture 21 - Spring '24 - 4/10/24

Merge - how do we sort two sorted lists?

43

Algorithm merge(A, B)
 S = []

 while(!A.isEmpty() and !B.isEmpty())
if A[0] < B[0]
 S.add(A.removeFirst())
else
 S.add(B.removeFirst())

while (!A.isEmpty())
S.add(A.removeFirst())

while (!B.isEmpty())
 S.add(B.removeFirst())
return S

runtime complexity?
O(n)

where n is A.length +
B.length

Merge Sort Implementation

44

Runtime of MergeSort

Runtime of merging two sorted two lists A, B where |A| + |B| = n :

O(n)

How many times do we merge two sorted lists?

log n times

So total runtime is:

O(n * log(n))

CS151 - Lecture 21 - Spring '24 - 4/10/24 45

Quicksort

46

Quicksort

• Divide and conquer
• Divide: select a pivot and create three sequences:

a. L: stores elements less than the pivot
b. E: stores elements equal to the pivot
c. G: stores elements greater than the pivot

• Conquer: recursively sort L and G
• Combine: L + E + G is a sorted list

47

Quick Sort

Sort [2, 6, 5, 3, 8, 7, 1, 0]

1. choose a pivot
2. swap pivot to the end of the array
3. Find two items:

a. left which is larger than our pivot
b. right which is smaller than our pivot

4. swap left and right
5. repeat 3 and 4 until right < left
6. swap left and pivot
7. Sort L E and R recursively

48

Quick Sort - Choosing a pivot

What if we chose our pivot to be 1?

We want a pivot that divides our list as evenly as possible.

Median-of-three: look at the first, middle, and last elems in the array,
and pick the middle element.

49

Quicksort runtime complexity

Bad pivot:

O(n^2)

Good pivot:

O(nlogn)

50

Summary of Sorting Algorithms

51CS151 - Lecture 21 - Spring '24 - 4/10/24

Algorithm Time

selection-sort

heap-sort

merge-sort

quick-sort

