
CS151 Intro to Data Structures
Hashmaps

1CS151 - Lecture 19 - Fall '24 11/18/24

Announcements & Outline

HW6 and Lab8 due last night

Next homework (HashMaps and QuickSort) due Sunday Dec 1st

Today:

- Map review
- Hash functions review
- Hash Maps - a magical data structure

2

Maps

• data structure that stores a collection of key-value pairs

• Implementation: ArrayMap of SimpleEntry

• What is a SimpleEntry?

• How did we implement these and what is the runtime complexity?

• put

• get

• remove

3

HashMaps

• A hash function maps an arbitrary length input to a fixed length
unique output

• Properties of a good hash function:
• one way
• collision resistant
• uniformity
• quick to compute

• Improves upon ArrayMap implementation by using the hash
function output as our array index

4

A Simple Hash Function

h(x) = x % N

How would the following operations look?

• put

• get

• remove

5

A Better Hash Function...

6

Problems with our hash: h(x) = x % N

1. Collisions!
2. What if the key x is not an integer?

Solution:

• Use a composition of two hash functions h1 and h2
• h1(x) maps keys to integers
• h2(x) “compresses” the output in a range from [0, N) to fit as array

indices
• h(x) = h2(h1(x))

7

Hash Function Illustration

8CS151 - Lecture 19 - Fall '24 11/18/24

Hash Function Illustration

9CS151 - Lecture 19 - Fall '24 11/18/24

Hash Function Illustration

10CS151 - Lecture 19 - Fall '24 11/18/24

Hash Function Illustration

11CS151 - Lecture 19 - Fall '24 11/18/24

• h
1
(k) takes an arbitrary key and computes an integer

• Goal: collision resistant!

• Need not be a fixed length or in fixed range [0, N)

• Can even be negative

12CS151 - Lecture 19 - Fall '24 11/18/24

• use the memory
address where the
keys are stored

•default hash code
for Java objects

13CS151 - Lecture 19 - Fall '24 11/18/24

Hash Codes h
1

Solution: Memory Addresses

What if our key is not an object?

• Integer cast: byte, short, int,char and float

• What about long and double??

• Can’t cast to int. We’ll lose information!

• COLLISIONS

• Instead, partition bits into int components and combine them

14CS151 - Lecture 19 - Fall '24 11/18/24

15CS151 - Lecture 19 - Fall '24 11/18/24

Why do we need compression?

Compression Idea 1: mod
h

2
(x) = x mod N

forces output to be in range [0, N)

How should we choose N?
primes!

16CS151 - Lecture 19 - Fall '24 11/18/24

Compression Idea 2: Multiply Add and Divide (MAD)

h
2
(x) = ((ax + b) mod p) mod N

where N is the capacity
 p is a prime > N
 a and b are [0, p)
 a scales the range
 b shifts the start

Putting them together...

Book’s AbstractHashMap hash method uses:

 h1(k) = k.hashCode() // java memory address

 h2(x) = ((ax + b) % p) % N

h = h2(h1(k))

17

Hash Maps

Efficient data structure that stores (Key, Value) pairs

Implements the Map ADT

• get(k): if the map M has an entry with key k, return its associated value; else, return null

• put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, replace old value with v and return old value
associated with k

• remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null

• size(), isEmpty()

• keySet(): return an iterable collection of the keys in M

• values(): return an iterator of the values in M

• entrySet(): return an iterable collection of the entries in M

18

Hash Maps

Implementation

Let’s start with our ArrayMap and use hashes for indices

BE CAREFUL! % MEANS REMAINDER IN JAVA NOT MOD!

What should we do if there’s a collision?

- For a first impl, let’s just overwrite

19

Performance Analysis

20

ArrayMap Collision Resistant Hash
Map

get

put

remove

AbstractHashMap

21CS151 - Lecture 19 - Fall '24 11/18/24

AbstractHashMap

22CS151 - Lecture 19 - Fall '24 11/18/24

Handling Collisions

23

Handling Collisions

A hash function does not guarantee one-to-one mapping – no hash
function does

One approach chaining:

When more than one key hash to the same index, we have a bucket

Each index holds a collection of entries

24CS151 - Lecture 19 - Fall '24 11/18/24

Collision Handling

Collisions occur when elements with different keys are mapped to
the same cell

Separate Chaining: let each cell in the table point to a linked list
of entries that map there

Simple, but requires additional memory besides the table

25CS151 - Lecture 19 - Fall '24 11/18/24

Let’s implement a ChainHashMap

26

What data structure should we use for the buckets?
- LinkedList!

Collision Handling Approach #2

Open Addressing and Probing

When a collision occurs, find an empty slot nearby to store
the colliding element

27

Open Addressing and Probing
•

28CS151 - Lecture 19 - Fall '24

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

11/18/24

Keep “probing”
(h(k)+1)%n
(h(k)+2)%n
....
(h(k)+i)%n
until you find an
empty slot!

ProbeHashMap

Let’s look at an implementation of ProbeHashMap

29

Open Addressing and Probing

Linear Probing (what we just saw):

• Keep “probing” until you find an empty slot
 (h(k)+1) % n
 (h(k)+2) % n

 (h(k)+i) % n

• Colliding items cluster together – future collisions to cause a longer
sequence of probes

30

Open Addressing and Probing

Quadratic Probing:

• Keep “probing” until you find an empty slot
 (h(k)+f(1)) % n
 (h(k)+f(2)) % n

 (h(k)+f(i)) % n

where f(i) = i2

31

Linear Probing vs Quadratic Probing

32

Linear Probing Quadratic Probing

● Quadratic probing still
creates large clusters!

● Unlike linear probing, they
are clustered away from
the initial hash position

● If the primary hash index
is x, probes go to x+1, x+4,
x+9, x+16, x+25 and so on,
this results in Secondary
Clustering

Approach #3: Double Hashing

33CS151 - Lecture 19 - Fall '24 11/18/24

Let’s try to avoid clustering.

To probe, let’s use a second hash function

• Keep “probing” until you find an empty slot
 (h(k)+f(1)) % n
 (h(k)+f(2)) % n

 (h(k)+f(i)) % n

Where f(i) = i * h’(k)

Approach #3: Double Hashing

34CS151 - Lecture 19 - Fall '24 11/18/24

Keep “probing” until you find an empty slot
 (h(k)+f(1)) % n
 (h(k)+f(2)) % n

 (h(k)+f(i)) % n

Where f(i) = i * h’(k)

A common choice for h’(k) = q - (k % q)
where q is prime and < n

Example

•

35CS151 - Lecture 19 - Fall '24 11/18/24

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44

0 1 2 3 4 5 6 7 8 9 10 11 12

h’(k)

h’(k)

probe:
(h(k) + f(k)) % n

h(k) = k % 13
f (k) = i * h’(k)
h’(k) = 7 - k % 7

Performance Analysis

36

ChainHashMap
Best Case

 ChainHashMap
 Worst Case

 ProbeHashMap
 Best Case

 ProbeHashMap
 Worst Case

get

put

remove

Which is better in practice?

Open Addressing vs Chaining

• Probing is significantly faster in practice

• locality of references – much faster to access a series of elements in
an array than to follow the same number of pointers in a linked list

37CS151 - Lecture 19 - Fall '24 11/18/24

Performance Analysis

38

ArrayMap HashMap with good
hashing and good probing

get

put

remove

Performance of Hashtable

39CS151 - Lecture 19 - Fall '24

 array linked list BST
(balanced)

HashTable

search

insert

remove

11/18/24

Load Factor

• HashMaps have an underlying array... what if it gets full?
• For ChainHashMap collisions increase
• For ProbeHashMap we need to resize!

• Load Factor = # of elements stored / capacity

• A common strategy is to resize the hash map when the load factor
exceeds a predefined threshold (often 0.75)

• tradeoff between memory and runtime

40

Summary

Hash Map:
- Efficient data structure with constant time* access, insertion, and

removal
- * assuming no collisions or expansions

Hash Functions:
- Composition of h1 and h2
- h2 compresses output of h1 between 0 and N

Collision strategies:
- Chaining: use a LL
- Probing: use a secondary hash function

41

