
CS151 Intro to Data Structures
Maps

1CS151 - Lecture 17 - Fall '24 11/11/24

Announcements

HW5 Autograder fixed

Lab8 and HW6 due Sunday

2CS151 - Lecture 17 - Fall '24 11/11/24

Outline

• Warm up - review
• Maps

• Operations:
• get
• put (insert)
• remove

• ArrayMap Implementation

• Intro to Hash Maps

3

Warm up: Choosing the Right Data Structure...

You are building a task management system that needs to handle various operations
efficiently. Each task has an associated importance level, and tasks can be completed,
added, or queried frequently. The operations that your system needs to support are:

1. Add a task: Insert a new task with a specified importance level.
2. Remove most important task: Complete and remove the task with the highest

importance.
3. Get most important task: View the task with the highest importance without

removing it.
4. Check if tasks are available: Determine if there are any tasks left to complete.
5. Update the importance of an existing task: Change the importance level of a

specific task.

4

Warm up: Choosing the Right Data Structure...

Priority Queue

1. Add a task:
a. O(logn)

2. Remove most important task:
a. O(logn)

3. Get most important task:
a. O(1)

4. Check if tasks are available:
a. O(1)

5. Update the importance of an existing task:
a. O(logn) assuming you have the location of the given task

5

Maps

6

Map Motivation

Suppose I have an array of Students. What is the runtime
complexity of the following operations?

Update the midterm grade of the second student
O(1)

Update the midterm grade for Liam
O(n) I need to search!

11/11/24CS151 - Lecture 17 - Fall '24 7

Student:

String name;
double[] hwGrades;
double[] labGrades;
double midtermGrade;
...

Student

name = Emily
....

Student

name = Aiden
....

Student

name = Sophia
....

Student

name = Liam
....

Student

name =
Isabella

....

Student

name = Noah
....

Student

name = Ava
....

Maps

• Also called “dictionaries” or “associative arrays”

• Similar syntax to an array:
• m[key] retrieves a value
• m[key] = value assigns a value
• keys need not be ints

• data structure that stores a collection of key-value pairs

8

Key-Value Pairs

• Each element in a map consists of (K, V)

• The key is used to identify the value
• In an array, this would be the index

• Examples: what are the keys and values here?
• Dictionary
• Phone Book
• Student grades

9

Map

• A indexable collection of key-value pairs

• Multiple entries with the same key are not allowed

10CS151 - Lecture 17 - Fall '24 11/11/24

Map ADT

• get(k): if the map M has an entry with key k, return its associated value; else, return null

• put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null;
else, replace old value with v and return old value associated with k

• remove(k): if the map M has an entry with key k, remove it from M and return its associated
value; else, return null

• size(), isEmpty()

• keySet(): return an iterable collection of the keys in M

• values(): return an iterator of the values in M

• entrySet(): return an iterable collection of the entries in M

11CS151 - Lecture 17 - Fall '24 11/11/24

Example

12CS151 - Lecture 17 - Fall '24 11/11/24

Example

13CS151 - Lecture 17 - Fall '24 11/11/24

Example

14CS151 - Lecture 17 - Fall '24 11/11/24

Example

15CS151 - Lecture 17 - Fall '24 11/11/24

Example

16CS151 - Lecture 17 - Fall '24 11/11/24

Example

17CS151 - Lecture 17 - Fall '24 11/11/24

Example

18CS151 - Lecture 17 - Fall '24 11/11/24

Example

19CS151 - Lecture 17 - Fall '24 11/11/24

Map ADT

• Map class is abstract
• Concrete Implementations of Map:

• UnsortedTableMap
• HashMap

20

Map

• How can we implement a map?
• Array !

21CS151 - Lecture 17 - Fall '24 11/11/24

Map.Entry Interface

22

● A (Key, Value) pair
● Keys and Values can be any reference type
● Methods:

○ getKey()
○ getValue()
○ setValue(V val)

● Implementation: SimpleEntry

ArrayMap

Let’s implement a Map as an array of SimpleEntry s

23

Performance Analysis

24CS151 - Lecture 17 - Fall '24

Array LinkedList

get O(n) O(n)

put O(n) O(n)

remove O(n) O(n)

11/11/24

LinkedList Map

● get(K key)

● put(K key, V value)
○ If k is not in the map add it. If it is in the map, replace with the

new value.

● remove(K key)

25

Performance Analysis

26CS151 - Lecture 17 - Fall '24

Array LinkedList

get O(n) O(n)

put O(n) O(n)

remove O(n) O(n)

11/11/24

HashMaps

27

Hash Functions

• A hash function maps an arbitrary length input to a fixed length unique output

• https://emn178.github.io/online-tools/sha256.html

• Applications
• data structures
• encryption / digital signatures
• blockchain

• Properties of a good hash function:
• one way
• collision resistant
• uniformity

28

Another Simple Hash Function

Given an int x...

h(x) = last 4 digits of x

• one way?
• collision resistant?
• uniform?

29

Another Simple Hash Function

h(x) = x % N

• one way?
• collision resistant?
• uniform?

30

HashMaps

• How can we use hash functions to improve the performance of our
ArrayMap implementation?

31

Summary

Maps:

- Associative DS with key-value pairs
- Can be implemented with an array or LL for O(n) operations

Hash Functions
- One way, collision resistant mathematical functions
- Maps an arbitrary length input to a fixed length unique output
- Can be used to implement efficient maps (next class..)

Start HW6 :)

32

