
CS151 Intro to Data Structures
Heaps & Priority Queues

1CS151 - Lecture 17 - Spring '24 03/20/24

Announcements

Quiz next week

Anonymous Course survey (5 bonus points on exam):
https://forms.gle/QRXSyZt9N5rT4iDf9

2

https://forms.gle/QRXSyZt9N5rT4iDf9

Outline

• Heap Review

• Breadth First Traversal

• Priority Queues

• Efficient heap construction

03/20/24CS151 - Lecture 17 - Spring '24 3

Heap Review

4

Binary Heap Properties
1. Each node has at most 2 children

2. For every node n (except for the root): n.key >= parent(n).key

3. Complete: all levels of the tree, except possibly the last one are fully
filled, and, if the last level of the tree is not complete, the nodes of
that level are filled from left to right

5

Heap Operations:

1. Insert
a. Upheap

2. Poll
a. Downheap

3. Search
4. remove

6

Heap Remove

More general case of poll

1. Find the index i of the element we want to delete

2. Swap this element with the last element (rightmost leaf)

3. Downheap to restore the heap property

7

Heap Remove: Example 1

8

remove(44)

Heap Remove: Example 2

9

remove(23)

44

Heap Remove: Example 2

10

remove(23)

44

11

remove(10)

44

Downheap:

1. Compare the new root with its children; if they are in the correct

order, stop.

2. If not, swap the element with one of its smallest children and

return to the previous step

44

26

44

31

Heap Remove

More general case of poll

1. Find the index i of the element we want to delete

2. Swap this element with the last element

3. Downheap to restore the heap property

Runtime complexity?

O(n + logn) = O(n)

12

Array based heap

Array/ArrayList of length n
for heap with n keys

Node at index i
•Left child index:

• 2i + 1

•Right child index:
• 2i + 2

03/20/24CS151 - Lecture 17 - Spring '24 13

Breadth First Search

14

Depth First Search (DFS)

• Depth First Search (DFS)
• start at root node and explore as far as possible along each branch
• applications? when have we used this in class?

15

Breadth First Search (BFS)

• Breadth First Search (BFS)
• Starts at the root and explores all nodes at the present “depth” before

moving to nodes on the next level
• Extra memory is usually required to keep track of the nodes that have not

yet been explored

16

Breadth-First Traversal

Traverse the tree level-by-level

• Within a level go left-to-right

03/20/24CS151 - Lecture 17 - Spring '24 17

Breadth-First Traversal

Traverse the tree level-by-level

• Within a level go left-to-right

This is the array order of an array-based binary tree

03/20/24CS151 - Lecture 17 - Spring '24 18

Breadth-First Traversal

03/20/24CS151 - Lecture 17 - Spring '24 19

pseudo-code?

Breadth-First Search

03/20/24CS151 - Lecture 17 - Spring '24 20

How would we change the pseudo-code?

Breadth First Search (BFS)

03/20/24CS151 - Lecture 17 - Spring '24 21

https://www.codecademy.com/article/tree-traversal

Priority Queue

03/18/24CS151 - Lecture 14 - Spring '24 22

Priority Queues

• What is a queue?

• What if we want to create a graduation queue of students who pick
up their diplomas in alphabetical order?

• Queues and Stacks removal is based on when it was added to the data
structure

• Instead we want removal order to be based on the student’s name

23

Priority Queue

A queue that maintains removal order of the elements according to some
priority

• generally not related to insertion time (although time of insertion COULD
be one criteria)

• each element has an associated priority with it which indicates when it
should be removed

• Usually removed based on min priority

• What data structure can we use to implement a priority queue?

24CS151 - Lecture 14 - Spring '24 03/18/24

Priority Queue ADT

03/18/24CS151 - Lecture 14 - Spring '24 25

Priority Queue

Entries (elements) are Key/Value pairs

The key represents the priority

Key type must be comparable

26

Entry Interface

public interface Entry<K extends Comparable<K>, V> {

 K getKey();

 V getValue();

}

27CS151 - Lecture 14 - Spring '24 03/18/24

Example - minPQ

28CS151 - Lecture 14 - Spring '24 03/18/24

Example - minPQ

29CS151 - Lecture 14 - Spring '24 03/18/24

Example - minPQ

30CS151 - Lecture 14 - Spring '24 03/18/24

Example - minPQ

31CS151 - Lecture 14 - Spring '24 03/18/24

Example - minPQ

32CS151 - Lecture 14 - Spring '24 03/18/24

Priority Queues can be Min or Max

Minimum Priority Queue vs Maximum Priority Queue

• Ascending vs Descending Order

poll: removeMin() or removeMax()

peek: min() or max()

03/18/24CS151 - Lecture 14 - Spring '24 33

Updating Key (Priority of an element)

What should happen when you change the key of an existing
element in a heap?

What are the cases?
• increaseKey
•decreaseKey

03/20/24CS151 - Lecture 17 - Spring '24 34

Priority Queue
Implementations

35

Ways to implement a priority queue

1. Heap
2. List
3. Sorted List

36

Implementing a Priority Queue – Binary Heap

03/18/24CS151 - Lecture 14 - Spring '24 37

Implementing a Priority Queue – Binary Heap

03/18/24CS151 - Lecture 14 - Spring '24 38

Implementing a Priority Queue – List

insert(k, v)

• Add the new item to the end of the list

min():

• Search through all the elements and find the element with the
smallest key

03/18/24CS151 - Lecture 14 - Spring '24 39

Implementing a Priority Queue - List

03/18/24CS151 - Lecture 14 - Spring '24 40

insert(k, v)
• Add the new

item to the
end of the list

min():
• Search

through all
the elements
and find the
element with
the smallest
key

Implementing a Priority Queue - List

03/18/24CS151 - Lecture 14 - Spring '24 41

insert(k, v)
• Add the new

item to the
end of the list

min():
• Search

through all
the elements
and find the
element with
the smallest
key

Implementing a Priority Queue - SortedList

insert(k, v)

• Find where to put the item based on k, then move other items over

min():

• Find the first element in the list

03/18/24CS151 - Lecture 14 - Spring '24 42

Implementing a Priority Queue - SortedList

03/18/24CS151 - Lecture 14 - Spring '24 43

Implementing a Priority Queue - SortedList

03/18/24CS151 - Lecture 14 - Spring '24 44

Implementing a Priority Queue

03/18/24CS151 - Lecture 14 - Spring '24 45

Binary Heap

Efficient Heap Construction

46

Bottom Up Heap Construction

Given all elements to create a heap from:

- Step 1: Fill the bottom level
- Step 2: Fill the level above it and fix heap properties
- Step 3: repeat

47

Example

Construct a heap for the list 2, 9, 7, 6, 5, 8, 3

48

CS151 - Lecture 17 - Spring '24 49

• We can construct a heap
storing n given keys using a
bottom-up construction with
log n phases

• In phase i, pairs of heaps
with 2i −1 keys are merged
into heaps with 2i+1−1 keys

Bottom-up Heap Construction

2i

−1
2i

−1

2i+1−1

03/20/24

Heap Construction

• Direct Approach:
• Add each element to the left-most leaf and upheap
• advantages?
• disadvantages?

• Bottom Up Approach:
• construct n elementary heaps storing one entry each and merge heaps

pairwise
• advantages?
• disadvantages?

50

