
CS151 Intro to Data Structures
Heaps & Priority Queues

1CS151 - Lecture 14 - Spring '24 03/18/24

Announcements

•Midterm grades coming

•QUIZ NEXT WEEK (Wednesday 3/27)
• Will add points to your midterm exam

• HW05 was due last night
• you have 2 more late days to submit

• If you re-did an assignment over spring break it’s due by 4pm today.
Let me know and i’ll open the gradescope

03/18/24CS151 - Lecture 14 - Spring '24 2

Outline

1. Comparables review for your HW and lab
2. Heaps

a. Definition
b. Operations
c. Implementing a heap

3. Selection Sort
4. Heapsort

3

Comparable and Generics

What do these mean?

1.public interface BinaryTree<E extends
Comparable<E>>

• The elements of the tree are comparable to eachother

2.public class LinkedBinaryTree<E extends
Comparable<E>> implements BinaryTree<E>

• LinkedBinaryTree has all the methods specified in Binary Tree and the
elements are comparable to eachother

4CS151 - Lecture 14 - Spring '24 03/18/24

Comparable and Generics

1.public class LinkedBinaryTree<E extends
Comparable<E>> implements
Comparable<LinkedBinaryTree<E>>, BinaryTree<E>

• LinkedBinaryTree is comparable to other LinkedBinaryTrees, the
elements of the tree are comparable to eachother, and
LinkedBinaryTree has all the methods specified in BinaryTree

5

Heaps

6

Binary Heap Properties
1. Each node has at most 2 children

2. For every node n (except for the root): n.key >= parent(n).key

3. Complete: all levels of the tree, except possibly the last one are fully
filled, and, if the last level of the tree is not complete, the nodes of
that level are filled from left to right

7

Complete Binary Trees

All levels of the tree, except possibly the last one are fully filled, and, if the last level of the
tree is not complete, the nodes of that level are filled from left to right

8 CS151 - Lecture 11 - Spring '2402/26/24

Is this a binary heap?

9

Is this a binary heap?

10

Is this a binary heap?

11

Is this a binary heap?

12

Heap Properties

• Height?
• log(n)

13

Heap Operations:

1. Insert
a. Upheap

2. Poll
a. Downheap

3. Remove
4. Search

14

Heap Insertion

Need to maintain:

1. completeness
2. key order property: n.key >= parent(n).key

15

insert(15)

Heap Insertion

Need to maintain:

1. completeness
2. key order property: n.key >= parent(n).key

16

insert(15)

15

key order property: n.key >= parent(n).key

UPHEAP!

Heap Insertion - Upheap

1. Compare the added element with its parent; if they are in the
correct order, stop.

2. If not, swap the element with its parent and return to the previous

step.

17

15 19

15

Heap Insertion

18

insert(15)

15

15

23

17

15

Heap insertion

1. Add the element to the bottom level of the heap at the leftmost open
space.

2. Compare the added element with its parent; if they are in the correct
order, stop.

3. If not, swap the element with its parent and return to the previous step.

Runtime complexity?

O(logn)

* assuming we know where the leftmost open slot is and expansion is not
necessary (array implementation)

19

Heap Poll

• Removing the root
• Also called extract

What properties do we need to maintain?

1. completeness
2. key order property: n.key >= parent(n).key

20

Heap Poll

1. Replace the root of the heap with the last element on the last level.

2. Compare the new root with its children; if they are in the correct

order, stop.

3. If not, swap the element with one of its smallest children and return

to the previous step

21

Heap Poll Example

22

1. Replace the root of the heap with the last element on the last level.

44

DOWNHEAP!

23

1. Compare the new root with its children; if they are in the correct

order, stop.

2. If not, swap the element with one of its smallest children and return

to the previous step

44

44

10

44

26

44

31

Heap Poll

1. Replace the root of the heap with the last element on the last level.
2. Compare the new root with its children; if they are in the correct order,

stop.
3. If not, swap the element with one of its smallest children and return to

the previous step

Runtime?

O(logn)

assuming... don’t need to expand and we know where the last elem is

24

Heap Search

• Is the element 36 in the heap?

• Runtime complexity?
• Best case?
• Worst case?

25

Heap Remove

More general case of poll

1. Find the index i of the element we want to delete

2. Swap this element with the last element (rightmost leaf)

3. Downheap to restore the heap property

26

Heap Remove: Example 1

27

remove(44)

Heap Remove: Example 2

28

remove(23)

44

Heap Remove: Example 2

29

remove(23)

44

30

remove(10)

44

Downheap:

1. Compare the new root with its children; if they are in the correct

order, stop.

2. If not, swap the element with one of its smallest children and

return to the previous step

44

26

44

31

Heap Remove

More general case of poll

1. Find the index i of the element we want to delete

2. Swap this element with the last element

3. Downheap to restore the heap property

Runtime complexity?

O(nlogn)

31

Heap Implementation

32

Array-based Binary Tree Implementation

33 CS151 - Lecture 12 - Spring '24

•

02/28/24

Array-based Binary Tree

•

34 CS151 - Lecture 12 - Spring '2402/28/24

Array-based Binary Tree

• The numbering can then be used
as indices for storing the nodes
directly in an array

35 CS151 - Lecture 12 - Spring '2402/28/24

Array based heap

Array/ArrayList of length n
for heap with n keys

03/20/24CS151 - Lecture 17 - Spring '24 36

Array based heap

Array/ArrayList of length n
for heap with n keys

Node at index i
•Left child index:

• 2i + 1

•Right child index:
• 2i + 2

03/20/24CS151 - Lecture 17 - Spring '24 37

Array based heap

Array/ArrayList of length n
for heap with n keys

Node at index i
•Left child index:

• 2i + 1

•Right child index:
• 2i + 2

• Peek:
• Get element at index 0

• Poll:
• Remove element at index 0

• No need to store references/links

03/20/24CS151 - Lecture 17 - Spring '24 38

Selection Sort

39

Selection Sort

In place sorting algorithm

1. Separate the array into “sorted” and “unsorted”
a. sorted starts empty

2. Find the min element in the unsorted array
3. Swap min with the first element in unsorted
4. repeat

40

Selection sort

code

Runtime complexity?
O(n^2)

Space complexity?

O(n)

41

Heap Sort

42

Heap Sort

• “selection sort with the correct data structure”
• in place algorithm

• divides input into a sorted and an unsorted region
• iteratively shrinks the unsorted region by extracting the min

element from it and inserting it into the sorted region

43

Heap Sort

• “selection sort with the correct data structure”

Expensive portion of selection sort?

Heap sort: instead of looping over the unsorted portion of the array,
store the unsorted data in a heap!

Now the min is always at the top.

Runtime complexity of poll? O(logn)

44

Heap Sort

1. Heap construction
a. rearrange the array into a heap

2. Heap extraction
a. iteratively poll and insert into the sorted portion

45

Heap Sort - Example

[64, 25, 12, 22, 11]

46

Heap Sort

1. Heap Construction Phase:
a. runtime complexity?

2. Heap Extraction Phase:
a. runtime complexity?

3. Overall Runtime Complexity?

47

