CS151 Intro to Data Structures

Midterm Review

Announcements

HW04 Due Sunday
- Binary trees will be on your exam!

Exam Wednesday

Exam Format

- 1 page $8.5 / 11$ in cheat sheet allowed (front and back)
- Format:
- 11 points T/F questions
- 8 points reading and understanding code
- 51 points open ended programming
- I won't be harsh on syntax grading
- I won't try to compile your code :)
- Be careful with types! You'll get points deducted if you code doesn't type check
- Tips:
- For the coding portion, DRAW! It will help you

Topics

Data Structures

- Arrays
- Expandable Arrays
- Stacks
- Queues
- Linked Lists
- Binary Trees

Other concepts:

- Generics
- Iterators
- Big-O analysis
. OOP \& Inheritance
- Interfaces

Data Structures

Expandable Arrays

search

- How do we implement?
- Best case?
- Worst case?
insertion
- How do we implement?
- Best case?
- Worst case?
removal
- How do we implement?
- Best Case?
- Worst Case?

LinkedList

search

- How do we implement?
- Best case?
- Worst case?
insertion
- How do we implement?
- Best case?
- Worst case?
removal
- How do we implement?
- Best Case?
- Worst Case?

Stacks - LinkedList implementation

Search?

- How do we implement?

Insertion?

- How do we implement?
- Best Case?
- Worst Case?

Removal?

- How do we implement?
- Best Case?
- Worst Case?

Stacks - Array implementation

Search?

- How do we implement?

Insertion?

- How do we implement?
- Best Case?
- Worst Case?

Removal?

- How do we implement?
- Best Case?
- Worst Case?

Queues - LinkedList implementation

Search?

- How do we implement?

Insertion?

- How do we implement?
- Best Case?
- Worst Case?

Removal?

- How do we implement?
- Best Case?
- Worst Case?

Queues - Array implementation

Search?

- How do we implement?

Insertion?

- How do we implement?
- Best Case?
- Worst Case?

Removal?

- How do we implement?
- Best Case?
- Worst Case?

Binary Trees

Search?

- How do we implement?
- Best Case?
- Worst Case?

Insertion?

- How do we implement?
- Best Case?
- Worst Case?

Removal?

- How do we implement?
- Best Case?
- Worst Case?

Binary SEARCH Trees

(assume balanced)
Search?

- How do we implement?
- Best Case?
- Worst Case?

Insertion?

- How do we implement?
- Best Case?
- Worst Case?

Removal?

- How do we implement?
- Best Case?
- Worst Case?

Other Concepts

Generics

What is a generic?
How do we declare a generic class?
What can a generic class hold?

Iterators

What methods can we call on iterators?

Advantages / disadvantages of iterators vs loops?

Runtime Complexity

Sort these from fastest to slowest:

- $\mathrm{O}(\mathrm{n})$
- $O\left(\mathrm{n}^{\wedge} 2\right)$
- O(logn)
- O(1)
- $O\left(2^{\wedge} n\right)$

Coding Questions

Coding Question \#1

You are given a string containing a combination of square brackets [], curly braces \{ \}, and parentheses (). Use a stack to determine if the input string is valid in terms of bracket balancing. Use a stack
$"[\}] " \quad=>$ True
$"[]\} " \quad=>$ False
$"\{[()]\} "=>$ True
$"\{[(])\} "=>$ False

Coding Question \#1

Runtime complexity?

Memory complexity?

Coding Question \#2

rear rangeEvenOdd modify the linked list in such a way that nodes with even indices ($0,2,4, \ldots$) appear before nodes with odd indices (1, $3,5, \ldots$). Ensure that the rearrangement is done in-place.

Coding Question \#2

Coding Question \#2

Edge cases!

Head -> Tail
Head -> A -> Tail
Head -> A -> B -> Tail

Do we handle these?

Coding Question \#2

Runtime complexity?
Memory complexity?

Coding Question 3:

name, intensity, kind
splash, 50, water
fireball, 100, fire
ignite, 15, fire
terraform, 20, earth

Design four classes: water, fire, earth, and spell.
Write a method castSpells takes two Spells and returns a int indicating which spell won

Water always beats fire regardless of intensity Otherwise, compare intensity

