
CS151 Intro to Data Structures
Checkstyle

Stacks

JUnit

1 CS151 - Lecture 07 - Spring '242/12/24

Announcements

HW1 Autograder issues

•HW02 due released
• Due Thursday Feb 15th
• START EARLY

• New Office Hours

• Wednesday after class (Wednesday 2:30-3:30pm)
• New policy:

• if you can’t make my office hours AND you have asked TAs for help AND you
have spent >3-5 hours on the same bug

• you can email me a zip with your code. If you include a list of everything you
have tried so far, I will debug

2 CS151 - Lecture 07 - Spring '242/12/24

Announcements

HW1
Extension until Thursday

Things to check
1. Named your methods exactly as written in the assignment
2. Constructor types
3. don’t have a try-catch in main or LookupZip

Let’s take a minute now to fix

3 CS151 - Lecture 07 - Spring '242/12/24

Outline

• Checkstyle

• Stacks

• JUnit

2/12/24 CS151 - Lecture 07 - Spring '24 4

Checkstyle

• A tool that ensures that the code adheres to a specified coding
standard

• Helps with readability
• Especially coding in teams

• Checkstyle is linter static code analysis tool used to find and flag stylistic issues,
and other issues in source code

5

CS151 Style Requirements

• Each file < 2000 lines
• No tabs

• Tabs can be a different size on different computers and printers.
• With spaces, the code will look the same regardless of the computer.
• Our vim setup will automatically replace tabs with spaces

• Javadocs required
• classes
• methods
• public and protected instance variables
• must be properly formatted

• global const / final variable names must be all caps
• local variables and methods must be camelcase
• No star imports (import java.util.*)
• No unused imports
• Lines must be under 80 characters
• Methods must be under 150 lines
• and more :)

6

7

Javadoc review

Proper format for a class

• /** **/
• First sentence must end in a period

/**

* Description of what this segment of code does.

**/

8

Javadoc review

Proper format for a method

/** A method to return 0.

* @return an integer 0

* @param foo an input

**/

public int retZero(int foo) {

 return 0;

}

9

First sentence ends with a
period

If there is a return value, must
add a @return flag.

If there are any parameters,
they must be marked with a
@param flag followed by the
param name

Checkstyle Example

java -jar checkstyle-8.16-all.jar -c cs151_checks.xml LookupZip.java

10

Checkstyle Requirements

HW03 onwards, all code must comply with the checkstyle

Future courses require it

Employers often require it

Makes working collaboratively much easier

2/12/24 CS151 - Lecture 07 - Spring '24 11

Stacks

12

Stacks - FILO

- First In Last Out

- stack of plates in the dining hall

- Operations:
- push
- pop
- peek
- isEmpty

13

Stack Interface

public interface Stack<E> {

 int size();

 boolean isEmpty();

 E pop();

 E peek(); //does not modify the stack

 void push(E element); //pushes to top of stack

}

2/12/24 CS151 - Lecture 07 - Spring '24 14

Stack Example - Browser History

- Coding using the Java Stack data structure (we won’t implement our
own yet)

- What happens if you call pop on an empty stack?
- This is called a precondition.

15

Stack Example

16 CS151 - Lecture 07 - Spring '242/12/24

Stack Example

17 CS151 - Lecture 07 - Spring '242/12/24

Stack Example

18 CS151 - Lecture 07 - Spring '242/12/24

Stack Example

19 CS151 - Lecture 07 - Spring '242/12/24

Stack Example

20 CS151 - Lecture 07 - Spring '242/12/24

Another Stack Example - Calculator

Postfix notation: A way to represent mathematical operations where
operators come after their operands

- 3 4 +

Infix notation (normal): operators between operands

- 3 + 4

Postfix notation eliminates the need for parenthesis

21

Postfix Notation - Examples

What is the postfix notation of (3 * 7)?

● 3 7 *
● How would we use a stack for this? Let’s draw it out
● Now, let’s code it

22

Postfix Notation - Examples

What is the postfix notation of (3 * 4 * 5)

• 3 4 5 * *
• Draw this out on board

What is the postfix notation of (3 + 4 * 5). Think PEMDAS! Which
operation should occur first. We read left to right

• 3 4 5 * +
• Draw this out on board!

23

Call Stacks

- Manages the flow of control in a program

- Data structure (stack) that stores the information about the current
method

- As functions call and return, the call stack grows and shrinks

24

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 25

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 26

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 27

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 28

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 29

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 30

The call
stack

2/12/24 CS151 - Lecture 07 - Spring '24 31

Call Stack
Keeps track of the local variables and return location for the current function

Allows program to jump from function to function without losing track of where the
program should resume

stack frame: records the information for each function call:
• local variables
• address of where to resume processing after this function is complete.

computer only needs to add or remove items from the very top of the stack,

stacks are a very useful data structure for Last-In-First-Out (LIFO) processing

2/12/24 CS151 - Lecture 07 - Spring '24 32

Stacks Summary

Simple and surprisingly useful data structure

First In Last Out (FILO)

Can store any number of items

User can only interact with the top of the stack:
• Push: add a new element to the top
• Pop: take off the top element
• Peek: view the top element without removing it

2/12/24 CS151 - Lecture 07 - Spring '24 33

JUnit

34

JUnit

A unit testing framework for Java.

A “unit” is typically a method that we want to test in isolation

Let’s write JUnit tests for our BrowserHistory

35

Using JUnit

Import Test Annotation Framework

import org.junit.Test;

• Write tests using @Test annotation

2/12/24 CS151 - Lecture 07 - Spring '24 36

Testing Guidelines

Test every method for correct outputs:

• Try simple and complex examples

Every exception and error condition should be tested too

Write test cases first, then implement

• Will make it easy to know when you are done

2/12/24 CS151 - Lecture 07 - Spring '24 37

