CS151 Intro to Data Structures

Interfaces

Algorithm Analysis

CS151 - Lecture 07 - Spring 24

Announcements

* HWO01 due tomorrow (2/8)

- HWO02 released sunday
o Linked Lists

 Lab checkoff, deadline is when corresponding HW is due

)

CS151 - Lecture 07 - Spring 24

Outline

* Interfaces
e Algorithm Analysis
- Will try to leave some time for HW help

Interfaces

An interface is a_contract - A set of shared methods that users must implement

create a program to calculate the area of different shapes, such as circles,
rectangles, triangles etc.

For each shape, you should be able to print the shape name and area

Every time someone adds a new shape, they must include the methods for
getName() and getArea()

Interfaces

. For any new shape that is created, we want to enforce that these
methods are also implemented.

interface Shape {
public double getArea() ;
public String getName () ;

class Circle implements Shape {

Interfaces

A contract - A set of shared methods that users must implement

A collection of method signatures with no bodies

A class can implement more than one interface

Interfaces

An interface is not a class!

A class is what an object is

An interface is what an object does
can not be instantiated
no constructors
incomplete methods

Interface

No modifier - implicitly public

No instance variables except for constants (static final)

Object Comparison

Object Equality

A custom class must define (override) its own equals

Object Comparison

. What if we wanted to compare two students by GPA?

int compareTo(T o)

Parameters:

o - the object to be compared.

Returns:

a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

02/07/24 CS151 - Lecture 07 - Spring '24

compareTlo

compareTo returns an 1nt, nota Boolean

Why?

because it needs to convey three outcomes:
e —1 if smaller compared to the parameter
0 if equal
* 1 if larger compared to the parameter

Comparable interface

The Comparable interface is designed for objects that have an
ordering

public i1nterface Comparable<T> {
int compareTo (T o0);

}

Comparable interface

When would we want to use this? Let’s see in code :)

Now, what if we wanted to sort from highest to lowest GPA

Custom Exceptions

Making Custom Exceptions

Often times we need to raise a custom exception

Extend Exception or RuntimeException

Custom Exceptions

What is the difference between extending from Exception
rather than RuntimeException®?

Subclass of Exception are checked exceptions — must be
treated/caught

Subclass of RuntimeException are not checkable during compile
time

Computational Complexity

Run Time Complexity

Understanding the resources required by an algorithm
Expressed with Big O Notation

Focus on worst case as a function of the input size
- input size in a data structure could be the number of elements (n)

Run time typically grows with the size of the input
« Unless it’s a constant time operation O(1)

Space (Memory) Complexity

How much memory a program needs

The space requirements time typically grows with input size. Expressed
as a size of the input. (Big O notation)

We focus on worst case analysis
* how much space will it take in the worst case?

AW -

Big O Notation and Theoretical Analysis

- Why do we express runtime notation with Big O notation? Why not

just say the run time in number of seconds?

long startTime = System.currentTimeMillis();
/* (run the algorithm) x/

long endTime = System.currentTimeMillis();
long elapsed = endTime — startTime;

.- Answer: comparing two algorithms requires exact same hardware

and software environments

// record the starting time

// record the ending time
// compute the elapsed time

9000

8000 -
7000
6000 -

-

(/)]

£ 5000 -

p—_

“E’ 4000 -

F 3000 -
2000 |
1000 -|

o

o

50
Input Size

100

21

Constant Time Operations

. Constant time operations require the same amount of time,
regardless of the size of the input

. Examples:
 Basic computations: Assigning variables, adding, multiplying,
boolean operators
- What were some constant time operations in
ExapandableArray?
. LinkedList?

Linear Time Algorithms:0(n)

. The runtime grows linearly as the size of the input grows

- Processes the input in a single pass spending constant time on each
item

. Examples:

* Asingle loop over an array
 ExpandableArray?
* LinkedList?

Example: Find Max

Worst case: 4n +1 ==> O(n)
Best case: 3n + 2 ==> O(n)

Quadratic Time: 0(n*)

Nested loops...

Example:
worst case: 4 + 3n?
best case: 7

O(nlogn) time
Example: Binary Search!

find O

id |

7 9 100 117 200

How many elements did we touch?
3 = log(8)
Where did the n come from?

Q8/07/24 CS151 - Lecture 07 - Spring 24

O(nlogn) time
Example: Binary Search!

Best case?

-5 0 1 7 9 100 117 200

02/07/24 CS151 - Lecture 07 - Spring '24

Exponential Time: O(2")
- Generate all possible subsets

{a,b,c}=..
How many subsets are there?

12}, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}
38
2"3 =8

Growth Rate

Q293/07/24

n

logn

n

nlogn

n

n

CS151 - Lecture 07 - Spring '24

Growth Rate

8R/07/24

n

nlogn

n

24

64

CS151 - Lecture 07 - Spring '24

Growth Rate

82/07/24

n | logn n nlogn n’ n’ ik

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65,3536
CS151 - Lecture 07 - Spring '24

Growth Rate

82/07/24

CS151 - Lecture 07 - Spring '24

n | logn n nlogn n’ n’ ik

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65,3536

32 > 32 160 1,024 32,768 4,294,967,296

Growth Rate

n | logn n nlogn n’ n’ ik

8 3 8 24 64 510 256

16 4 16 64 256 4,096 65,536

32 5 32 160 1,024 32.768 4,294,967, 296
64 6 64 384 4,096 262, 144 1.84 x 10!°

B3/07/24 CS151 - Lecture 07 - Spring 24

Growth Rate

n | logn n nlogn n’ n’ ik

8 24 64 512 256
4 16 64 256 4,096 65,536
5 32 160 1,024 32,768 4,294,967,296
6 64 384 4,096 262, 144 1.84 x 101
128 | 7 128 896 16,384 2,097,152 3.40 x 1038
8 256 2.048 65,536 16,777,216 455107
9 512 4,608 262,144 134,217,728 1.34 x 101%*

B2/07/24 CS151 - Lecture 07 - Spring '24

Asymptotic Notation

O(n2) O(n)

As the number of elements approaches
o INfinity, only the dominant term matters

Time

oiegm That is why we simplify O(n+1) to O(n) etc.

Data Input (Space)

B83/07/24 CS151 - Lecture 07 - Spring 24

Big-O Analysis

?. Write a polynomial in terms of 2. Simplify the polynomial

input size n * |dentify dominant term — highest
e Only loops contribute degree polynomial
e Each nested factor is multiplied * Polynomials beat polylogs
* Each sequential factor is summed * Exponentials beat polynomials

e Discard constants

