
CS151 Intro to Data Structures
Interfaces

Algorithm Analysis

1 CS151 - Lecture 07 - Spring '2402/07/24

Announcements

•HW01 due tomorrow (2/8)

• HW02 released sunday
• Linked Lists

•Lab checkoff, deadline is when corresponding HW is due

2 CS151 - Lecture 07 - Spring '2402/07/24

Outline

• Interfaces

• Algorithm Analysis

• Will try to leave some time for HW help

02/07/24 CS151 - Lecture 07 - Spring '24 3

Interfaces

• An interface is a contract - A set of shared methods that users must implement

• create a program to calculate the area of different shapes, such as circles,
rectangles, triangles etc.

• For each shape, you should be able to print the shape name and area

• Every time someone adds a new shape, they must include the methods for
getName() and getArea()

4

Interfaces

• For any new shape that is created, we want to enforce that these
methods are also implemented.

5

interface Shape {
 public double getArea();
 public String getName();
}

class Circle implements Shape {

Interfaces

A contract - A set of shared methods that users must implement

A collection of method signatures with no bodies

A class can implement more than one interface

6

Interfaces

An interface is not a class!

A class is what an object is

An interface is what an object does
can not be instantiated
no constructors
incomplete methods

7 CS151 - Lecture 07 - Spring '2402/07/24

Interface

No modifier - implicitly public

No instance variables except for constants (static final)

8 CS151 - Lecture 07 - Spring '2402/07/24

Object Comparison

9

Object Equality

A custom class must define (override) its own equals

10 CS151 - Lecture 07 - Spring '2402/07/24

Object Comparison

• What if we wanted to compare two students by GPA?

11 CS151 - Lecture 07 - Spring '2402/07/24

compareTo

compareTo returns an int, not a Boolean

Why?

because it needs to convey three outcomes:
• -1 if smaller compared to the parameter
• 0 if equal
• 1 if larger compared to the parameter

12 CS151 - Lecture 07 - Spring '2402/07/24

Comparable interface

The Comparable interface is designed for objects that have an
ordering

public interface Comparable<T> {
 int compareTo(T o);
}

13 CS151 - Lecture 07 - Spring '2402/07/24

Comparable interface

When would we want to use this? Let’s see in code :)

Now, what if we wanted to sort from highest to lowest GPA

14 CS151 - Lecture 07 - Spring '2402/07/24

Custom Exceptions

15

Making Custom Exceptions

Often times we need to raise a custom exception

Extend Exception or RuntimeException

16 CS151 - Lecture 07 - Spring '2402/07/24

Custom Exceptions

What is the difference between extending from Exception
rather than RuntimeException?

Subclass of Exception are checked exceptions – must be
treated/caught

Subclass of RuntimeException are not checkable during compile
time

17

Computational Complexity

18

Run Time Complexity

• Understanding the resources required by an algorithm

• Expressed with Big O Notation

• Focus on worst case as a function of the input size
• input size in a data structure could be the number of elements (n)
• Run time typically grows with the size of the input

• Unless it’s a constant time operation O(1)

19

Space (Memory) Complexity

How much memory a program needs

The space requirements time typically grows with input size. Expressed
as a size of the input. (Big O notation)

We focus on worst case analysis

• how much space will it take in the worst case?

CS151 - Lecture 07 -
Spring '242002/07/24

Big O Notation and Theoretical Analysis

• Why do we express runtime notation with Big O notation? Why not
just say the run time in number of seconds?

• Answer: comparing two algorithms requires exact same hardware
and software environments

21

Constant Time Operations

• Constant time operations require the same amount of time,
regardless of the size of the input

• Examples:
• Basic computations: Assigning variables, adding, multiplying,

boolean operators
• What were some constant time operations in

ExapandableArray?
• LinkedList?

22

• The runtime grows linearly as the size of the input grows

• Processes the input in a single pass spending constant time on each
item

• Examples:
• A single loop over an array

• ExpandableArray?

• LinkedList?

CS151 - Lecture 07 - Spring '242302/07/24

Example: Find Max

Worst case: 4n +1 ==> O(n)

Best case: 3n + 2 ==> O(n)

24

CS151 - Lecture 07 - Spring '242502/07/24

Nested loops...

Example:
worst case: 4 + 3n2

best case: 7

Example: Binary Search!

CS151 - Lecture 07 - Spring '242602/07/24

-5 0 1 7 9 100 117 200

find 0

How many elements did we touch?
3 = log(8)
Where did the n come from?

Example: Binary Search!

CS151 - Lecture 07 - Spring '242702/07/24

-5 0 1 7 9 100 117 200

Best case?

Exponential Time: O(2n)

- Generate all possible subsets

{a, b, c } = ...

How many subsets are there?

{∅}, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}
8
2^3 = 8

28

Growth Rate

29 CS151 - Lecture 07 - Spring '2402/07/24

Growth Rate

30 CS151 - Lecture 07 - Spring '2402/07/24

Growth Rate

31 CS151 - Lecture 07 - Spring '2402/07/24

Growth Rate

32 CS151 - Lecture 07 - Spring '2402/07/24

Growth Rate

33 CS151 - Lecture 07 - Spring '2402/07/24

Growth Rate

34 CS151 - Lecture 07 - Spring '2402/07/24

Asymptotic Notation

CS151 - Lecture 07 - Spring '243502/07/24

As the number of elements approaches
infinity, only the dominant term matters

That is why we simplify O(n+1) to O(n) etc.

• 2. Simplify the polynomial
• Identify dominant term – highest

degree polynomial
• Polynomials beat polylogs
• Exponentials beat polynomials
• Discard constants

36 CS151 - Lecture 07 - Spring '2402/07/24

