
CS151 Intro to Data Structures
LinkedLists

1 CS151 - Lecture 04- Spring '2401/31/24

Announcements

• HW00 due tomorrow Thursday (2/1)
• Any questions? post on Piazza

2 CS151 - Lecture 04- Spring '2401/31/24

Outline

• Review - ExpandableArray
• Nested Classes

• LinkedLists

01/31/24 CS151 - Lecture 04- Spring '24 3

ExpandableArray

• Sequential, contiguous, memory layout

• Computational complexity:
• Accessing an element?

• O(1)
• Inserting an element?

• O(n)
• Removing an element?

• O(n)

4

Java.util.ArrayList
• https://docs.oracle.com/javase/8/docs/api/java/util/Array

List.html

•import java.util.ArrayList

•ExpandableArray is a simple ArrayList

5 CS151 - Lecture 04- Spring '2401/31/24

Methods of an ArrayList
add(o) appends o at the end of list
add(index, o) inserting given o at index, shifting list to the

right
get(index) returns the object found at index
remove(index) removes the object found at index and

returns it, shifting list to the left
set(index, o) replaces object at given index with o
size() returns the number of elements in list
indexOf(o) returns the first index where o is found, or -1
lastIndexOf(o) returns the last index where o is found, or -1
clear() removes all

6 CS151 - Lecture 04- Spring '2401/31/24

Nested Classes

• A class defined inside the definition of another class

• Let’s code it :)

• An instance of the inner class can't be created without an instance

of the outer class.

• Benefits:
• Encapsulation (data hiding and access control)

7

Nested Classes - Access modifiers

• An inner class can access all members of the outer class

Person.this.name;

• An outer class can access all members in the inner class

• Even when they’re private!

8

Linked List

01/31/24 CS151 - Lecture 04- Spring '24 9

List versus Array - memory

An array is a single consecutive
piece of memory

A list can be made of many
disjoint pieces

01/31/24 CS151 - Lecture 04- Spring '24 10

• A linked list is a lists of objects (nodes)

• The nodes form a linear sequence

• Linked lists are typically unbounded, that is, they can grow infinitely.

node: basic unit that contains data and one or more references or
links to other nodes.

Linked List

01/31/24 CS151 - Lecture 04- Spring '24 11

Linked List

• A linked list is a lists of objects (nodes)

• The nodes form a linear sequence

• Linked lists are typically unbounded, that is, they can grow infinitely.

node: basic unit that contains data and one or more references or
links to other nodes.

01/31/24 CS151 - Lecture 04- Spring '24 12

A B C D

A node

13 CS151 - Lecture 04- Spring '24

next

data Node

public class Node<T> {

 private T data;

 private Node next;

}

01/31/24

Linked List
How might we loop over all of the elements of a linked list?

01/31/24 CS151 - Lecture 04- Spring '24 14

A B C D

∅

head

public class Node<T> {

 private T data;

 private Node next;

}

Questions?

15

Linked List Operations

• Access
• Insertion
• Removal

16

Access Operation

• Check if the head node is what you are looking for

• Iterate through nodes:
• Stop when found
• Otherwise return null

01/31/24 CS151 - Lecture 04- Spring '24 17

A B C D

∅

head

null

Access Operation

Let’s code it

• Computational Complexity?
• O(n)

18

Insert Operation

Let’s code it

• Computational complexity?
• Insert at head?

• O(1)
• Insert at tail?

• O(n)
• Insert at arbitrary location? (middle of list)

• O(n)

19

Insert Operation

What if we keep a pointer to the tail?

private Node tail;

How does this change our insertTail method?

Computational complexity?
O(1)

20

Inserting at the Head
1. create a new node

2. have new node point
to old head

3. update head to point
to new node

01/31/24 CS151 - Lecture 04- Spring '24 21

Remove Operation

• Let’s write it on the board quickly

22

Remove Operation remove(“B”)

01/31/24 CS151 - Lecture 04- Spring '24 23

A B C D

∅

head

null

A B C D

∅null

head

Properties in LinkedList

What do we need to keep track of?

• Head

• Tail (optional)

• Number of elements (optional)

• Is empty (optional)

01/31/24 CS151 - Lecture 04- Spring '24 24

instanceof

• An operator that tests to see if an object is an instance of a specified
type

• Every subclass object is an instance of its super class – not true the
other way

25 CS151 - Lecture 04- Spring '24

 class A {} class B extends A{} class C extends B{}

 A[] as = {new A(), new B(), new C()};

 for (int i=0; i<as.length; i++) {

 System.out.print((as[i] instanceof A)+ " ");

 System.out.print((as[i] instanceof B)+ " ");

 System.out.println(as[i] instanceof C);

 }

01/31/24

