
CS151 Intro to Data Structures
LinkedLists
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Announcements

• HW00 due tomorrow Thursday (2/1)
• Any questions? post on Piazza
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Outline

• Review - ExpandableArray
• Nested Classes

• LinkedLists
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ExpandableArray

• Sequential, contiguous, memory layout 

• Computational complexity:
• Accessing an element?

• O(1)
• Inserting an element?

• O(n)
• Removing an element?

• O(n)
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Java.util.ArrayList
• https://docs.oracle.com/javase/8/docs/api/java/util/Array

List.html

•import java.util.ArrayList

•ExpandableArray is a simple ArrayList
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Methods of an ArrayList
add(o) appends o at the end of list
add(index, o) inserting given o at index, shifting list to the 

right
get(index) returns the object found at index
remove(index) removes the object found at index and 

returns it, shifting list to the left
set(index, o) replaces object at given index with o
size() returns the number of elements in list
indexOf(o) returns the first index where o is found, or -1
lastIndexOf(o) returns the last index where o is found, or -1
clear() removes all
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Nested Classes

• A class defined inside the definition of another class

• Let’s code it :)

• An instance of the inner class can't be created without an instance 

of the outer class.

• Benefits:
• Encapsulation (data hiding and access control)
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Nested Classes - Access modifiers

• An inner class can access all members of the outer class 

Person.this.name;

• An outer class can access all members in the inner class 

• Even when they’re private!
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Linked List
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List versus Array - memory

An array is a single consecutive 
piece of memory

A list can be made of many 
disjoint pieces
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• A linked list is a lists of objects (nodes)

• The nodes form a linear sequence

• Linked lists are typically unbounded, that is, they can grow infinitely. 

node: basic unit that contains data and one or more references or 
links to other nodes.

Linked List
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Linked List

• A linked list is a lists of objects (nodes)

• The nodes form a linear sequence

• Linked lists are typically unbounded, that is, they can grow infinitely. 

node: basic unit that contains data and one or more references or 
links to other nodes.
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A node
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next

data Node

public class Node<T> {

  private T data;

  private Node next;

}
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Linked List
How might we loop over all of the elements of a linked list?
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A B C D

∅

head

public class Node<T> {

  private T data;

  private Node next;

}



Questions?
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Linked List Operations

• Access
• Insertion
• Removal 
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Access Operation 

• Check if the head node is what you are looking for

• Iterate through nodes:
• Stop when found
• Otherwise return null
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Access Operation 

Let’s code it

• Computational Complexity?
• O(n)
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Insert Operation

Let’s code it

• Computational complexity?
• Insert at head? 

• O(1)
• Insert at tail?

• O(n)
• Insert at arbitrary location? (middle of list)

• O(n) 
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Insert Operation

What if we keep a pointer to the tail?

private Node tail;

How does this change our insertTail method?

Computational complexity? 
O(1)
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Inserting at the Head
1. create a new node

2. have new node point 
to old head

3. update head to point 
to new node
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Remove Operation

• Let’s write it on the board quickly 
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Remove Operation remove(“B”)
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Properties in LinkedList

What do we need to keep track of?

• Head 

• Tail (optional)

• Number of elements (optional)

• Is empty (optional)
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instanceof

• An operator that tests to see if an object is an instance of a specified 
type

• Every subclass object is an instance of its super class – not true the 
other way
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  class A {} class B extends A{} class C extends B{}

  A[] as = {new A(), new B(), new C()};

  for (int i=0; i<as.length; i++) {

    System.out.print((as[i] instanceof A)+ " ");

    System.out.print((as[i] instanceof B)+ " ");

    System.out.println(as[i] instanceof C);

  }
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