
CS151 Intro to Data Structures
ArrayList, Generics

1 CS151 - Lecture 03 - Spring '240

Announcements

•Lab02 - Inheritance, ExpandableArray, Generics

•HW01 released. Due Feb 1st (Thursday)
• Will be using your ExpandableArray from today’s lab

2 CS151 - Lecture 03 - Spring '240

Outline

•ExpandableArray

•Generics

0 CS151 - Lecture 03 - Spring '24 3

ARRAYS

4

Let’s design an array that can change size!

Imagine we have n items in our array

Say we want to add another item, are we stuck?

•No, make a new array and copy all the items over

0 CS151 - Lecture 03 - Spring '24 5

A

0 1 2 n-1

A

0 1 2 n-1
B

0 1 2 n

Array – Copying items over

0 CS151 - Lecture 03 - Spring '24 6

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

Array – Copying items over

0 CS151 - Lecture 03 - Spring '24 7

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

Array Copying

Computational complexity?

O(n)

8

How big should the new array be?

9

Just one more slot?

A

0 1 2 n-1

B

0 1 2 n

Pro: only use much space needed

Con: can lead to lots of copying over

10x the amount of slots?
A

0 1 2 n-1

B

0 1 2 10n

…
.

Pro: don’t need to copy lots of
times

Con: lots of unused space

How big should the new array be?

•2 times the length of the full array

•Compromise between creating too much unnecessary space and
having to expand the array too many times

•Runtime complexity?

0 CS151 - Lecture 03 - Spring '24 10

A

0 1 2 n-1

B

0 1 2 2n

Array Operations

● Insertion
● Removal

11

Insertion

Where would be the easiest place to insert a new item?

The first open spot?

12 CS151 - Lecture 03 - Spring '24

A

0 1 2 n-1

A

0 1 2 n

0

beginning of the array?

If we are going to search for that item a bunch

Insertion

• In an operation insert(i, o), we make room for
the new element o by shifting forward the elements
A[i], …, A[n - 1]

13 CS151 - Lecture 03 - Spring '24

A

0 1 2 ni

A

0 1 2 n
o
i

A

0 1 2 ni

0

Removal
Say we want to remove the item at index i?

0 CS151 - Lecture 03 - Spring '24 14

A

0 1 2 n
o
i

A

0 1 2 ni

What’s the simplest approach?

Just remove it, leaving an empty index

What is wrong with this setup?

Why is having an empty slot in the middle of the array not ideal? What
issues might arise?

•Makes inserting complicated
• Where would we put a new item? At the end, or fill the spot?

•Makes looping through the array complicated
• Need to check for null spots

0 CS151 - Lecture 03 - Spring '24 15

A

0 1 2 ni

Removing

In an operation remove(i), we
• remove the element at location I
• then fill the hole by shifting
backwards elements
A[i+1], …, A[n-1]

16 CS151 - Lecture 03 - Spring '24

A

0 1 2 ni

A

0 1 2 n
o
i

A

0 1 2 ni

A

0 1 2 ni

0

Array Review

Last Class: We designed an array that can change size

Insertion:
• Expand array 2x each time it’s full
• copy all elements over
• Complexity?

Deletion:
• Fill the hole by shifting everything backwards
• Complexity?

17

ExpandableArray

Last class, we designed an expandable array

Today we will Implement it

In this course, we will use simple Java data structures as an underlying
tool to build off.

Let’s start coding it! :)

0 CS151 - Lecture 03 - Spring '24 18

Questions?

19

ExpandableArray

What did we just do? Create an ExpandableArray for int types
private int[] data; //underlying array

•What if we want an ExpandableArray for doubles, Strings, Students, etc.

•We could create an ExpandableArray for each type... but now this violates
our goal of reusability

• This brings us to Generics

0 CS151 - Lecture 03 - Spring '24 20

Generics

0 CS151 - Lecture 03 - Spring '24 21

Generics

• First, let’s look at some code.

•A way to write classes or methods that can operate on a variety of
data types without being locked into specific types at the time of
definition

•Write definitions with type parameters

public <T> void print(T x) {

 System.out.println(x);

}

22 CS151 - Lecture 03 - Spring '240

Generic Classes

• We just implemented a generic print method

• Let’s see how to make our ExpandableArray generic
• Code!

23

Generics Arrays

Can not create arrays of parameterized types!

 private T[] array = new T[10]; is not valid

•Casting to the rescue!
• T[] array = (T[]) new Object[10];

24 CS151 - Lecture 03 - Spring '240

Other Generic Restrictions

Can not declare static instance variables of a parameterized type

private static T MAX_SIZE;

//compiler error: non-static type variable T
cannot be referenced from a static context

25

Generic Static Methods

These are allowed!

26

//Static class method
public static <T> void getMax(T t){
 System.out.println(t);
}

//Class instance Method:
public T get(int index) {
 return this.data[index];
}

Summary

• We started building our own ExpandableArray data structure
• You will finish this in Lab

• We made our ExpandableArray generic
• What does this mean?

27

