
CS151 Intro to Data Structures
Java Review, Inheritance, Generics

1CS151 - Lecture 02 - Spring '24

Announcements

•Piazza:
• Asynchronous communication

•Gradescope:
• Submit all assignments
• Can request re-grade requests
• Access code posted on Piazza

• Textbook

2CS151 - Lecture 02 - Spring '24

Announcements

•Homework will be released this Sunday, due on Thursday (Feb
1)

3CS151 - Lecture 02 - Spring '24

Outline

• Review: Exceptions and I/O (Lab1)

• Object Oriented Programming

• Inheritance

• Arrays

CS151 - Lecture 02 - Spring '24 4

File I/O

- What Java object can we use to read from files?
- Is this approach only for files?

5

Exceptions

code :)

6

Exceptions

1. Checked Exceptions
a. ‘error: unreported exception FileNotFoundException;

must be caught or declared to be thrown’

2. Unchecked Exceptions
a. ArrayIndexOutOfBoundsException
b. NullPointerException
c. ArithmeticException

7

Exceptions

How do we deal with them?

a) in the caller

b) in the callee

8

Exceptions

• Exceptions are objects

• use new keyword

• Inheritance

• NullPointerException is a RuntimeException is an
Exception

• FileNotFoundException is a IOException is an Exception

9CS151 - Lecture 02 - Spring '24

Object Oriented Programming

10

Software Design Goals

• Robustness
• software capable of error handling and recovery

• Adaptability
• software able to evolve over time and changing conditions (without huge

rewrites)

• Reusability
• same code is usable as component of different systems in various applications

Object Oriented Programming aims to achieve these!

11CS151 - Lecture 02 - Spring '24

What benefits does a Class give us?

1. Abstraction - modeling classes based on properties they share

2. Encapsulation - hide internal details of how an Object works, while
providing a well defined way to interact with it

12CS151 - Lecture 02 - Spring '24

Inheritance

- Enables a class to use the properties and behaviors of another class

- Establishes relationships between classes

Towards our goal of reusability!

13

Inheritance

Student example code

14

super

•super refers to the superclass object

• can also be used to reference methods defined in the superclass

• super(.....) references the parent class constructor

•super.getName()

15CS151 - Lecture 02 - Spring '24

Inheritance - constructors

• Constructors are never inherited

• A subclass may invoke the superclass constructor via a call to super
with the appropriate parameters

• If calling super, it must be in the first line of the subclass’
constructor

• If no explicit call to super, then an implicit call to the
zero-parameter super()will be made

16CS151 - Lecture 02 - Spring '24

Method Overriding

• Inherited methods from the superclass can be redefined/changed
• signature stays the same

• Let’s override toString in our code

17CS151 - Lecture 02 - Spring '24

protected

• access modifier
• public – world
• private – super class only
• protected – super and subclasses

• subclass inherits all public and protected instance variable and
methods

• What about private instance variables?

18CS151 - Lecture 02 - Spring '24

Type Hierarchy

• Every subclass object is an
instance of its superclass

• A superclass object is NOT an
instance of the subclass

class A {}

class B extends A {}

class C extends B {};

19CS151 - Lecture 02 - Spring '24

Break for questions

20

Homogeneous Type

• Array requires that the elements are of the same type

code :)

21CS151 - Lecture 02 - Spring '24

Object Casting

22CS151 - Lecture 02 - Spring '24

• Type conversion between super and subclasses – like the primitive
types

• A superclass is a wider type

• A subclass is a narrower type

code :)

Object Casting

23CS151 - Lecture 02 - Spring '24

● Down casting - casting an object of a parent class type to an object
of a more specific child class type
○ Dangerous!!

B b2 = (B) a1; //ClassCastException!

Object Casting

24CS151 - Lecture 02 - Spring '24

● Does downcasting always cause a ClassCastException?

A a2 = new C();

C c2 = (C) a2;

Arrays

25

What is an Array?

26 CS151 - Lecture 03 - Spring '24

A

0 1 2 n-1i n

0

Let’s design an array that can change size!

Imagine we have n items in our array

Say we want to add another item, are we stuck?

• No, make a new array and copy all the items over

0 CS151 - Lecture 03 - Spring '24 27

A

0 1 2 n-1

A

0 1 2 n-1
B

0 1 2 n

Array – Copying items over

0 CS151 - Lecture 03 - Spring '24 28

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

Array – Copying items over

0 CS151 - Lecture 03 - Spring '24 29

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

A

0 1 2 n-1

B

0 1 2 n

Array Copying

Computational complexity?

O(n)

30

How big should the new array be?

31

Just one more slot?

A

0 1 2 n-1

B

0 1 2 n

Pro: only use much space needed

Con: can lead to lots of copying over

10x the amount of slots?
A

0 1 2 n-1

B

0 1 2 10n

…
.

Pro: don’t need to copy lots of
times

Con: lots of unused space

How big should the new array be?

• 2 times the length of the full array

• Compromise between creating too much unnecessary space and
having to expand the array too many times

• Runtime complexity?

0 CS151 - Lecture 03 - Spring '24 32

A

0 1 2 n-1

B

0 1 2 2n

Array Operations

● Insertion
● Removal

33

Insertion

Where would be the easiest place to insert a new item?

The first open spot?

34 CS151 - Lecture 03 - Spring '24

A

0 1 2 n-1

A

0 1 2 n

0

beginning of the array?

If we are going to search for that item a bunch

Insertion

• In an operation insert(i, o), we make room for
the new element o by shifting forward the elements
A[i], …, A[n - 1]

35 CS151 - Lecture 03 - Spring '24

A

0 1 2 ni

A

0 1 2 n
o
i

A

0 1 2 ni

0

Removal
Say we want to remove the item at index i?

0 CS151 - Lecture 03 - Spring '24 36

A

0 1 2 n
o
i

A

0 1 2 ni

What’s the simplest approach?

Just remove it, leaving an empty index

What is wrong with this setup?

Why is having an empty slot in the middle of the array not ideal? What
issues might arise?

• Makes inserting complicated
• Where would we put a new item? At the end, or fill the spot?

• Makes looping through the array complicated
• Need to check for null spots

0 CS151 - Lecture 03 - Spring '24 37

A

0 1 2 ni

Removing

In an operation remove(i), we
• remove the element at location I
• then fill the hole by shifting
backwards elements
A[i+1], …, A[n-1]

38 CS151 - Lecture 03 - Spring '24

A

0 1 2 ni

A

0 1 2 n
o
i

A

0 1 2 ni

A

0 1 2 ni

0

Summary

Computational complexity of:

• Array lookup?
• O(1)

• Array expansion?
• O(n) or O(1) amortized

• Array insertion?
• O(n)

• Array Removal?
• O(n)

39

ExpandableArray

We just created an Expandable Array

• Dynamic size: grows and shrinks

• No empty slots between filled slots

• Supports:
• Inserting in a specific location
• Removing from a specific location

0 CS151 - Lecture 03 - Spring '24 40

Summary

When would we want to use an array?

When would we might not want to?

Homework is released due Thursday (2/1)

Gradescope will be open Sunday

41

